ORI

UNITED STATES DISTRICT COURf
EASTERN DISTRICT OF VIRGINIA

Alexandria Division PIFENDY 20 24010 2
Clrmiue pomrnr pnyer
LIMELIGHT NETWORKS, INC., Case No. ARE OIS s !
“oeNIR0 - . |
Plaintiff, (+(5eVFR0 - I
JURY TRIAL DEMANDED
V.

XO COMMUNICATIONS, LLC., AND
AKAMAI TECHNOLOGIES, INC,,

Defendants.

COMPLAINT

Limelight Networks, Inc. (“Limelight” or “Plaintiff”) hereby alleges for its Complaint
against Defendants XO Communications, LLC (“X0”) and Akamai Technologies, Inc.
(“Akamai”) (collectively, “Defendants™) on personal knowledge as to its own actions and on
information and belief as to the actions of others, as follows:

NATURE OF THE ACTION

1. This is a patent infringement action by Limelight to end Defendants’ unauthorized
and infringing manufacture, use, sale, offering for sale, and/or importation of products and
methods incorporating Limelight’s patented inventions.

2. Limelight holds all substantial rights and interest in the Patents-in-Suit described
below, including the exclusive right to sue Defendants for infringement and recover damages.

3. Plaintiff Limelight seeks monetary damages, prejudgment interest and injunctive

relief for Akamai’s and XO’s past and on-going infringement of the Patents-in-Suit.

THE PARTIES

4, Limelight Networks, Inc. (“Limelight”) is a corporation organized and existing
under the laws of Delaware with its principal place of business at 222 South Mill Ave., Suite 800,
Tempe, Arizona, 85281.

5. On information and belief, Defendant XO Communications, LLC. (“X0”) is a
corporation existing and organized under the laws of Delaware and has its principal place of
business at 13865 Sunrise Valley Drive, Herndon, VA 20171.

6. On information and belief, Defendant Akamai Technologies, Inc. (“Akamai,” or
“Defendant™) is a corporation existing and organized under the laws of Delaware and has its
principal place of business at 150 Broadway, Cambridge, Massachusetts, 02142.

7. Founded in 2001, Limelight is a leader in digital content delivery. Its content
acce]eration technologies and services enable publishers to deliver their digital content (e.g., web
pages, videos, full-length movies and television shows, operating system updates, and online
games) on any device, anywhere in the world.

8. Akamai also sells products and services for digital content delivery. As such,
numerous Limelight products and services compete with those offered by Akamai. For example,
Limelight and Akamai each operate a global Content Delivery Network (“CDN”)—a
geographically distributed network of servers that their customers, such as web sites, software
applications, video-on-demand and streaming media providers, can use to accelerate content
delivery to their end users. Such CDNs accelerate content delivery through a variety of
techniques, such as caching content at numerous servers so that the content can be delivered to
end users from locations close to the user. XO is a telecommunications company that is engaged
in an extensive partnership with Akamai, including as a reseller of Akamai services and as

a partner in deployment and operation of hardware and software components of a CDN.

9, While Akamai was one of the first to market with a CDN solution, newer entrants
such as Limelight have rapidly innovated and developed new technology contributions—and
obtained patent protection for those contributions—which Akamai has then implemented in
order to remain competitive.

JURISDICTION AND VENUE

10. This action for patent infringement arises under the patent laws of the United
States, Title 35 of the United States Code.

11. This Court has subject matter jurisdiction pursuant to 28 U.S.C. §§ 1331 and
1338(a).

12. This Court has general and specific personal jurisdiction over Defendant XO. XO
has substantial contacts with the forum as a consequence of establishing its headquarters in
Virginia and in this District, and XO conducts substantial business in Virginia. XO sells, makes,
uses, and offers for sale its products and services, including products and services that infringe
Plaintiff’s patents, within the state of Virginia, including to customers in Virginia. Such
customers include USA Today, a customer it shares with Akamai in connection with use of
systems that infringe the asserted patents. In addition, on information and belief, XO has
established data centers for use in infringing the asserted Limelight Patents in this district,
including at 12100 Sunrise Valley Drive Reston, VA, and at 8613 Lee Highway, Fairfax, VA
22031.

13, XO has committed and continues to commit acts of patent infringement, including
making and using infringing systems, and performing infringing methods, within this district,
including in conjunction with Akamai.

14. This Court has general and specific personal jurisdiction over Defendant Akamai.

Akamai has substantial contacts with the forum as a consequence of conducting substantial

business in Virginia and in this District, including establishment of offices at 11111 Sunset Hills
Road, Suite 250, Reston, VA 20190. In addition, Akamai has established a significant presence
in this forum by locating its content delivery servers accused of infringing the patents asserted in
this action in Virginia and in this District. For example, according to publicly available
documentation, Akamai has placed more than 200 racks of its accused content delivery servers
and associated hardware and software at a data center located at 12100 Sunrise Valley Drive
Reston, VA 20191, and has placed an additional 170 racks of its accused content delivery servers
and associated hardware and software at a data center located at 1780 Business Center Drive,
Reston, VA 20190. Akamai has also located its accused content delivery servers in data centers
in Sterling, VA, Manassas, VA, Ashburn, VA, and Vienna, VA, each of which are located in this
District. The operation of these content delivery servers in Virginia and in this District
constitutes infringement of the asserted Limelight patents in this District. In addition, this Court
has jurisdiction over Akamai because Akamai has conducted business with a Virginia-based
corporation, XO, for the purpose of infringing the patents.

15. Akamai has committed and continues to commit acts of patent infringement,
including making and using infringing systems, and performing infringing methods, within this
district, including in conjunction with XO.

16. Venue is proper for XO in this District under 28 U.S.C. §§ 1391(b) and (c), and
1400(b) because, as described above, a substantial part of the events giving rise to Limelight’s
claims occurred in this district, and because XO, which is headquartered in Herndon, Virginia,
resides within this district.

17. Venue is proper for Akamai in this District under 28 U.S.C. §§ 1391(b) and (c),

and 1400(b) because, as described above, Akamai has a regular and established practice of

business in this district and has committed acts of infringement in this district, including by
virtue of its far-reaching relationship with XO, whose headquarters are in this district. In 2001,
Akamai and XO entered into a strategic agreement under which “XO will provide co-location
space in its déta centers for the deployment of additional Akamai servers,” and “XO’s
interconnection bandwidth related services and hosting capabilities [will] help Akamai to expand
its reach to enable users to benefit from improved performance and accelerated delivery of the
Web’s most popular streaming media, software applications and content served on Akamai’s
globally distributed network”—in short, to co-locate at XO-owned or XO-administered data
centers the products and services accused of infringing the Limelight patents asserted in this
action. “X0O Communications and Akamai Announce Strategic Alliance,” dated May 17, 2001, at

http://www.akamai.eu/html/about/press/releases/2001/press_051701.html (last visited November

29, 2015). On information and belief, one such data center is located at 12100 Sunrise Valley
Drive, Reston, VA. XO also resells Akamai’s accused content delivery services to its customers.
JOINDER

18. Joinder is proper under 35 U.S.C. § 299 because questions of fact common to
each Defendant will arise in the action. As detailed below, Limelight alleges patent infringement
by Defendants in connection with their making and using systems, and their practice of methods,
for accelerating the delivery of digital content based on hardware and software developed by
Defendant Akamai. As such, factual issues regarding the operation of that hardware and software
are common to Akamai and to XO.

19. Joinder is further proper because some of Defendants’ infringement arises out of
the same transaction, occurrence, or series of transactions or occurrences relating to the making,

using, importing into the United States, offering for sale, or selling of the same accused product

or process. For example, as described below, while each of XO and Akamai can directly infringe
the asserted claims, when the infringing system includes a combination of XO-deployed and
Akamai servers, Akamai and XO act jointly or in concert to perform the infringing acts, and in
that instance, the infringement is not complete until both XO and Akamai have provided or
performed their respective parts.

THE ASSERTED PATENTS

20. As a global leader in digital content delivery, Limelight has sought patent
protection for many of its innovations in this field, including the patents asserted in this matter.

THE CONDITIONAL PROTOCOL CONTROL PATENTS

21. On May 11, 2010, the United States Patent and Trademark Office duly and legally
issued U.S. Patent No. 7,715,324 (“the 324 Patent™), entitled “Conditional Protocol Control.” A
-copy of the 324 Patent is attached to the Complaint as Exhibit A.

22. On December 10, 2014, the United States Patent and Trademark Office duly and
legally issued U.S. Patent No. 8,750,155 (“the 155 Patent™), entitled “Conditional Protocol
Control.” A copy of the 155 Patent is attached to the Complaint as Exhibit B.

23. The 324 and 155 Patents arose out of the innovative work performed by Limelight
engineers to utilize selective optimizations of the Transport Control Protocol (“TCP™), a core
Internet protocol that governs how content is delivered over the web, in order to accelerate their
customers’ delivery of Internet content, including web pages, downloadable files, and media
content such as images or audio/video, to their end users. The inventors of the 324 and 155
Patents developed ways to use TCP optimizations to accelerate such content conditionally, such
as on a customer-by-customer, or file-by-file basis, in order to optimize this content delivery for

any given set of circumstances.

24. In October 2008, Limelight licensed the basic technology and software for
optimizing TCP connections from FastSoft, Inc., a startup company that developed an algorithm
known as FastTCP, which allowed for accelerating TCP connections on one end (the server end)
of an Internet connection. FastSoft had no experience in content acceleration in the context of
CDNs such as those provided by Limelight and by Akamai, and instead pursued a business
model whereby it sought to sell hardware appliances that implemented its algorithm. On top of
the elementary technology supplied by FastSoft, Limelight engineers developed a complete TCP
optimization solution for CDNs that could analyze a request for content received by a content
server and, based on information obtained from the request, such as the identity of the customer
or the type of content requested, conditionally apply a set of transport protocol optimizations on
a connection by connection basis. Because optimization could be applied conditionally on a
connection-by-connection basis under the Limelight solution, each connection could be
optimized differently, according to a configurable profile.

25. Limelight sought and obtained patent protection for its conditional protocol
control innovations, including the 324 and 155 Patents.

26. Limelight also shared its conditional protocol control innovations with FastSoft,
including providing FastSoft with the functional requirements for its Deliver XD service that
implemented these innovations, and collaborating with FastSoft on the improvement of its
technology for use within a Content Delivery Network.

27. In September 2012, Akamai announced that it had acquired FastSoft, and had
integrated FastSoft’s engineering team—a team that had been exposed to Limelight’s

innovations—into Akamai. Shortly thereafter, Akamai communicated to Limelight that all

FastSoft products were entering their End Of Life (“EOL”) phase, and support for these products
would be discontinued within one year, or earlier if allowed under the license agreement.

28. At least by September 2013, Akamai had deployed FastSoft-based TCP protocol
optimization in its own Content Delivery Network in a manner strikingly similar to the
implementation created and patented by Limelight. Like Limelight, Akamai’s TCP optimization
does not utilize FastSoft hardware appliances, but instead deploys TCP optimizations in software
at content servers in the Content Delivery Network. Like Limelight, Akamai’s TCP optimization
is conditional, highly configurable via a configuration profile, and can be set connection-by-
connection. Like Limelight, Akamai’s TCP optimization parameters are based on analysis of the
received content request. Each of these aspects is described in Limelight’s conditional protocol
control patents prior to Akamai’s deployment.

OTHER LIMELIGHT PATENTS

29. On October 7, 2014, the United States Patent and Trademark Office duly and
legally issued U.S. Patent No. 8,856,263 (“the 263 Patent”), entitled “Systems and methods
thereto for acceleration of web pages access using next page optimization, caching and pre-
fetching techniques.” A copy of the 263 Patent is attached to the Complaint as Exhibit C.

30. On March 25, 2014, the United States Patent and Trademark Office duly and
legally issued U.S. Patent No. 8,683,002 (“the 002 Patent™), entitled “Content delivery network
cache grouping.” A copy of the 002 Patent is attached to the Complaint as Exhibit D.

31. On April 21, 2015, the United States Patent and Trademark Office duly and
legally issued U.S. Patent No. 9,015,348 (“the 348 Patent”), entitled “Dynamically selecting
between acceleration techniques based on content request attributes.” A copy of the 348 Patent is

attached to the Complaint as Exhibit E.

32. On December 24, 2013, the United States Patent and Trademark Office duly and
legally issued U.S. Patent No. 8,615,577 (“the 577 Patent™), entitled “Policy based processing of
content objects in a content delivery network using mutators.” A copy of the 577 Patent is
attached to the Complaint as Exhibit F.

33. Limelight owns ali substantial right, title, and interest in the 324, 155, 002, 263,
348, and 577 Patents, and holds the right to sue and recover damages for infringement thereof,
including past infringement.

COUNT I AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 8,750,155

34. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth
herein.

35. On information and belief, Akamai has infringed and continues to infringe one or
more claims of the 155 Patent, including but not limited to claims 1, 3, 8, 9, 10, 11, 12, 13, 15,
18, 19, and 20 pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by
making, using, selling, and/or offering to sell in the United States without authority and/or
importing into the United States without authority, the Akamai Intelligent Platform, including a
content delivery network with edge servers running Akamai’s TCP optimization functionality, as
well as services associated therewith (the 155 Infringing Products). Based on information and
belief, and publicly available documentation, the 155 Infringing Products perform TCP
optimization by modifying pre-existing TCP settings based upon parameters that are determined
at least in part with reference to information in the URLs of end-user requests processed by
Akamai.

36. Further, Akamai’s edge servers with TCP optimization meet the requirements of

the claimed content distribution server, as reflected by publicly available Akamai documentation.

On information and belief, to perform their basic role, Akamai’s edge servers, including edge
servers that are co-located with XO, have multiple network ports to send and receive data. For
example, Akamai publishes the following images showing Akamai servers having two Ethernet

ports:

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X4i_1-5x18 10G_Rear Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1 2x8 CacheH Rear Largejpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network Pac

kages.html (last visited November 29, 2015).
37. Further, Akamai’s geographically distributed deployments of its edge servers, as
deployed and operated for example by XO in its data centers, include routers that “allow Akamai

to direct traffic between Akamai's equipment and the providers that Akamai connects to.”

10

[Akamai Hands And Eyes Guide], available at https://fieldtech.akamai.com/heguide/Router Har

dware.html. When such equipment is deployed in a manner that connects Akamai’s edge servers
to the Internet, for example by XO in its data centers, it likewise has multiple ports configured to
send and receive data over a connecting network.

38. Likewise, Akamai’s servers, including on information and belief servers that are
co-located with XO, include processors:

Server Generations

The following server generations are listed from most recently deployed to no jonger being deployad. This a brief overview of gach generation's specifications.

Generation Specifications { Partial List }

X8 Intel Broadwell DE

X7 Intel Skylake Intel Haswell E3-1200 V5 series, up to 64 GB Unbuffered DDR4
Xém Intel Haswell E5-2600 V3 series, 16G to 256G DDR4 Registered
X8 Intel Haswell £3-1200 V3 series, 16G or 32G DDR3

X5 Intel Sandy Bridge ES 2600 EP series, 128GB or 256GB DDR3
R4 Intel Ivy Bridge E3-1270 V2, 16G DDR3

X4 Intel Sandy Bridge E3-1270, 16G DDR3

X2 Intel Nehalem X3470, 8G to 32G DDR3

XL Intel Nehalem X3470, 8G DDR3

G10 AMD Opteron 65204 Quad Core, 64G DDR3

G9 AMD Opteron 4184 Hexa Core, 8G DDR3

G7 AMD Opteron 1389 Quad Core, 8G DDR2

G6 AMD Opteron 2381 Quad Core, 8G DDR2

G5 AMD Athlon II 240e Dual Core, 8G DDR3

G4 AMD Opteron 1218 Dual Core, 4G DDR2

G3 AMD Opteron 244, 2G or 4G M DDR1

G2 AMD Opteron 244, 1G or 26 DDR1

Gt AMD Opteron 244, 512M DDR1

Akamai Hands And Eyes Guide, available at https.//fieldtech.akamai.com/heguide/Server Hard

ware.html (last visited November 29, 2015). The 155 Infringing Products include a protocol
handler, such as the TCP/IP protocol stack implementation, that establishes and maintains
connections with end-users. The 155 Infringing Products have storage that they use to store
customer content to serve to end-users.

39. The 155 Infringing Products perform TCP optimization in a manner that infringes
the asserted claims. Specifically, the 155 Infringing Products monitor connections with end-users
for requests. When they receive end-user requests the 155 Infringing Products determine

parameters that relate to processing and memory capabilities in the TCP protocol, such as

11

maximum buffer space and socket buffer values. These determinations are made by the edge

server, including on information and belief in those cases where the edge server is co-located

with XO, based at least in part on reference to information in the URL of the request (such as for

example, the hostname field or the customer ID). This information is utilized, in addition to other

information, for the Akamai server to determine how aggressive the TCP optimization should be

for that connection. Once that determination is made, the TCP settings are altered to put that new

optimization into effect by changing pre-existing TCP values to new values that are consistent

with the correct level of TCP optimization. As Akamai’s documentation explains in detail:

At a high-level, it operates in two modes: slow-start and congestion-avoidance.
Those are different phases in the protocol that attempt to probe the network for
available bandwidth using slightly different approaches. TCP maintains what’s
referred to as a congestion window, which determines how many packets can be
in-flight on the network at any point in time. The higher the congestion window,
the greater TCP believes its fair share of the available bandwidth is. In slow-start,
for every packet that is correctly received (i.e., acknowledged), the congestion
window is expanded by a factor of 2; which is an aggressive rate of increase
despite the “slow-start” misnomer. In congestion-avoidance, TCP believes it is
much closer to its fair share and probes the network much less aggressively.
Instead of expanding the congestion window by a factor of 2, the congestion
window is only expanded by a single packet after an entire congestion window
worth of packets is acknowledged by the receiver. In both cases, once loss is
detected, the congestion window is shrunk and the probing starts again.

Akamai optimizes TCP by tuning knobs that control where we start probing from
(i.e., the initial congestion window), how quickly we expand the congestion
window in both the slow-start (factor of 2 or 3 or higher) and congestion-
avoidance (increase by 1 or 2 or higher) phases, as well as how much we back off
when a loss is detected (shrink window by 50%, 30% or even less). That allows
us to control how aggressive the protocol is in acquiring bandwidth. A TCP
instance that probes aggressively and does not back off as much will acquire a
larger share of the available bandwidth, under most network conditions.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz

ations.html (last visited November 29, 2015).

40.

Akamai’s TCP optimization has at least medium and low settings, which

determine how aggressively TCP is optimized for the connection. Further, the selection of a level

12

of TCP optimization results in the timing of data transmission at the transport layer being
modified as a function of the rate at which the congestion window is changed. On information
and belief, Akamai’s TCP optimization also results in changing the burst size of the connection.
41. Further, Akamai utilizes laféncy estimates to select the correct level of TCP
optimization. As Akamai explains: “It’s a reactive protocol. FastTCP, the Akamaized version of
FastSoft’s solution, attempts to estimate the correct transmission rate by utilizing latency

estimates, among other things, without actually inducing loss. It’s a proactive protocol.”

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz
ations.html (last visited November 29, 2015).

42. Further, on information and belief, Akamai makes TCP optimization
determinations based on a predetermined performance profile, for instance, based on the identity
of the customer or the specific customer content provided by Akamai. On information and belief,
this performance profile is stored on at least a customer-by-customer basis and is used to set the
level of TCP optimization (such as medium and low).

43. Further, when an Akamai edge server with TCP optimization does not have
content requested by an end-user in its own cache, the edge server can obtain that content from
the cache or caches of neighboring or “parent” Akamai edge servers, provide that content to the
end-user, and also store that same content in its own cache for future use. When an Akamai edge
server obtains the missing content from the cache of an edge server hosted by XO, or vice versa,
Akamai and XO act in concert or jointly to practice the claimed inventions and the infringement
is not complete until both Akamai and XO have provided or performed their respective parts.

44. On information and belief, Akamai’s TCP optimization, which infringes the

asserted claims, utilizes technology that Akamai received from Limelight by way of its

13

acquisition of FastSoft, as discussed above at 9f 24-28. As Akamai explains in its public
documentation:

There has been a lot of research on TCP over the last 10-15 years, much of which
has focused on improving some aspect of TCP’s behavior. The key finding is that
TCP does not work well under all types of network characteristics, including
loss/latency patterns, cross-traffic, how quickly the available bandwidth changes
over time, and so on. In 2012 Akamai acquired FastSoft, a company that
developed a novel transport solution that does not rely on detecting loss to adapt
the congestion window. In general, TCP induces loss, by constantly probing for
more available bandwidth, in order to estimate the correct transmission rate. It
then reacts to the occurrence of loss. It’s a reactive protocol. FastTCP, the
Akamaized version of FastSoft’s solution, attempts to estimate the correct
transmission rate by utilizing latency estimates, among other things, without
actually inducing loss. It’s a proactive protocol.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz
ations.html.

45. The making, and operation, of the 155 Infringing Products as described above
constitutes infringement of at least the above-mentioned claims of the 155 Patent pursuant to 35
U.S.C. § 271(a).

46. Unless enjoined by this Court, Akamai will continue to infringe the 155 Patent.

47. As a result of Akamai’s conduct, Limelight has suffered and will continue to
suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of Akamai’s infringement of the 155 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT II AGAINST AKAMAL:

INFRINGEMENT OF U.S. PATENT NO. 7,715,324

48. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

14

49. On information and belief, Akamai has infringed and continues to infringe one or
more claims of the 324 Patent, including but not limited to claims 1, 2, 4, 5, 6, 7, 8, 10, and 11,
pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,
selling, and/ér offering to sell in the United States without authority and/or importing into the
United States without authority, the Akamai Intelligent Platform, including a content delivery
network with edge servers running Akamai’s TCP optimization functionality, as well as services
associated therewith (the 324 Infringing Products). Based on information and belief, and publicly
available documentation, the 324 Infringing Products perform TCP optimization by modifying
pre-existing TCP settings based upon parameters that are determined at least in part with
reference to information in the URLSs of end-user requests processed by Akamai.

50. Specifically, Akamai’s edge servers with TCP optimization, including on
information and belief, edge servers that are co-located with XO, manage the delivery of content
over network connections in satisfaction of the asserted claims, on information and belief and
based on publicly available documentation.

51. The 324 Infringing Products include a protocol handler, such as the TCP/IP
protocol stack implementation, that establishes and maintains connections with end-users.

52. On information and belief, to perform their basic role, Akamai’s edge servers,
including edge servers that are co-located with XO, include network ports used to receive and
send communications over a network. For example, Akamai publishes the following images

showing Akamai servers having Ethernet ports:

15

Akamai Hands And Eyes Guide, available at https:/fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X4i_1-5x18_10G_Rear Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1 2x8 CacheH Rear Largejpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network Pac

kages.html (last visited November 29, 2015).

53. Further, Akamai’s geographically distributed deployments of its edge servers, as
deployed and operated for example by XO in its data centers, include routers that “allow Akamai
to direct traffic between Akamai's equipment and the providers that Akamai connects to.”

[Akamai Hands And Eyes Guide], available at https://fieldtech.akamai.com/heguide/Router Har

dware.html. When such equipment is deployed in a manner that connects Akamai’s edge servers
to the Internet, for example by XO in its data centers, it likewise has multiple ports configured to

send and receive data over a connecting network.

16

54. The 324 Infringing Products perform TCP optimization in a manner that infringes
the asserted claims. Specifically, the 324 Infringing Products monitor connections with end-users
for requests. When they receive end-user requests Akamai’s 324 Infringing Products determine a
level of TCP optimization in part on reference to information in the URL of the request (such as
for example, the hostname field, or the customer ID, which constitute alphanumeric strings).
This information is utilized, in addition to other information, for the Akamai server, including on
information and belief, cases where the edge server is co-located with XO to determine how
aggressive the TCP optimization should be for that connection. Once that determination is made
the TCP settings are altered to put that new optimization into effect by changing pre-existing
TCP values to new values that are consistent with the correct level of TCP optimization. As
Akamai’s documentation explains in detail:

At a high-level, it operates in two modes: slow-start and congestion-avoidance.
Those are different phases in the protocol that attempt to probe the network for
available bandwidth using slightly different approaches. TCP maintains what’s
referred to as a congestion window, which determines how many packets can be
in-flight on the network at any point in time. The higher the congestion window,
the greater TCP believes its fair share of the available bandwidth is. In slow-start,
for every packet that is correctly received (i.e., acknowledged), the congestion
window is expanded by a factor of 2; which is an aggressive rate of increase
despite the “slow-start” misnomer. In congestion-avoidance, TCP believes it is
much closer to its fair share and probes the network much less aggressively.
Instead of expanding the congestion window by a factor of 2, the congestion
window is only expanded by a single packet after an entire congestion window
worth of packets is acknowledged by the receiver. In both cases, once loss is
detected, the congestion window is shrunk and the probing starts again.

Akamai optimizes TCP by tuning knobs that control where we start probing from
(i.e., the initial congestion window), how quickly we expand the congestion
window in both the slow-start (factor of 2 or 3 or higher) and congestion-
avoidance (increase by 1 or 2 or higher) phases, as well as how much we back off
when a loss is detected (shrink window by 50%, 30% or even less). That allows
us to control how aggressive the protocol is in acquiring bandwidth. A TCP
instance that probes aggressively and does not back off as much will acquire a
larger share of the available bandwidth, under most network conditions.

17

TCP Optimizations, available at https://developer.akamai.cony/stuff/Optimization/TCP_Qptimiz

ations.html (last visited November 29, 2015).

55. Thus, Akamai’s TCP optimization has at least medium and low settings, which
determine how aggressively TCP is optimized for the connection. Further, the selection of a level
of TCP optimization results in the timing of data transmission at the transport layer being
modified as a function of the rate at which the congestion window is changed.

56. This process of TCP optimization is performed, on information and belief, on
multiple connections, including multiple simultaneous connections, including from different end-
users, where the multiple connections are used to serve different content. On information and
belief, the TCP optimization process employed by Akamai can apply different levels of TCP
optimization to these different connections.

57. Further, Akamai utilizes other attributes such as latency estimates to select the
correct level of TCP optimization. As Akamai explains: “FastTCP, the Akamaized version of
FastSoft’s solution, attempts to estimate the correct transmission rate by utilizing latency
estimates, among other things, without actually inducing loss. It’s a proactive

protocol.” TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TC

P_Optimizations.html (last visited November 29, 2015).

58. Further, on information and belief, Akamai makes TCP optimization
determinations based at least in part on attributes associated with the identity of the customer or
the specific customer content provided by Akamai. On information and belief these attributes
and the information is stored on at least a customer-by-customer basis and is used to set the level

of TCP optimization (such as medium and low).

18

59. On information and belief, Akamai’s TCP optimization, which infringes the
asserted claims, utilizes technology that Akamai received from Limelight by way of its
acquisition of FastSoft, as discussed above at 9§ 24-28. As Akamai explains in its public
documentation:

There has been a lot of research on TCP over the last 10-15 years, much of which
has focused on improving some aspect of TCP’s behavior. The key finding is that
TCP does not work well under all types of network characteristics, including
loss/latency patterns, cross-traffic, how quickly the available bandwidth changes
over time, and so on. In 2012 Akamai acquired FastSoft, a company that
developed a novel transport solution that does not rely on detecting loss to adapt
the congestion window. In general, TCP induces loss, by constantly probing for
more available bandwidth, in order to estimate the correct transmission rate. It
then reacts to the occurrence of loss. It’s a reactive protocol. FastTCP, the
Akamaized version of FastSoft’s solution, attempts to estimate the correct
transmission rate by utilizing latency estimates, among other things, without
actually inducing loss. It’s a proactive protocol.

TCP Optimizations, available at https://developer.akamai.com/stuff/Optimization/TCP_Optimiz

ations.htm].

60. The making and operation of the 324 Infringing Products as described above
constitutes infringement of at least the above-mentioned claims of the 324 Patent pursuant to 35
U.S.C. § 271(a).

61. Unless enjoined by this Court, Akamai will continue to infringe the 324 Patent.

62. As a result of Akamai’s conduct, Limelight has suffered and will continue to
suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of Akamai’s infringement of the 324 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

19

COUNT IIT AGAINST AKAMATI:
INFRINGEMENT OF U.S. PATENT NO. 8,683,002

63. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth
herein.

64. On information and belief, Akamai has infringed and continues to infringe one or
more claims of the 002 Patent, including but not limited to claims 1, 2, 3,4, 5, 7, 8, 9, 10, 13, 15,
16, 17, 18, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents,
by making, using, selling, and/or offering to sell in the United States without authority and/or
importing into the United States without authority, the Akamai Intelligent Platform, including a
content delivery network with edge servers, as well as services associated therewith (the 002
Infringing Products). Akamai’s content delivery network includes a plurality of points of
presence that are distributed geographically. These points of presence include edge servers.
Based on information and belief, and publicly available documentation, edge servers that do not
have user-requested content in their own caches can ask other edge servers whether they have the
requested content in their caches and if so the content is provided to the user.

65. Specifically, the 002 Infringing Products include edge servers that receive end-
user requests for content in the form of URLs. When such requests are received, if the content is
not in the cache of the edge server, the edge server contacts neighboring edge servers to
determine whether the neighboring edge servers have the user-requested content in their own
caches. If the neighboring edge server has the requested content the content is served to the end
user. As Akamai explains:

The edge server will check its local cache as well as the caches of other machines

in the server deployment to see if the requested object has been seen before. If the

object is found, the edge server will verify that the object is not stale and will
serve it to the user.

20

If the object is found in the cache but it is stale, the edge server will contact
another Akamai deployment or the origin to see if a newer version has been
uploaded.

Client to Edge Servers to Origin, available at https://developer.akamai.com/stuff/Overview/Clie

nt_Edge Servers Origin.html (last visited November 29, 2015).

66. Further, if the edge server receiving the request for content that it does not have in
its own cache is also unable to get that content from a neighboring edge server, the edge server
requests the content from a server higher in Akamai’s distribution hierarchy, including in some
instances, the origin server, until it is able to retrieve the requested content. On information and
belief, this process is based in part on analysis of the URL of the content request. As Akamai
explains:

When an edge server gets a request for an object that it hasn’t yet seen, it will
download it from either another Akamai deployment or the origin. The customer’s
metadata determines whether the edge contacts the origin directly, or if it applies
some sort of tiered distribution hierarchy.

Tiered distribution is used to provide greater origin offload by allowing many
Akamai edge deployments to go forward to a smaller set of deployments which in
turn go forward to the origin. In the case of Akamai’s Site Shield product, the
Customer’s IT department can program the IP addresses of these top-tier
machines into their firewall and block access to their network from all other
Internet hosts.

At this point, caching rules are applied to the object and the requested bytes are
delivered to the user.

Client to Edge Servers to Origin, available at https://developer.akamai.com/stuff/Overview/Clie

nt_Edge Servers_Origin.html (last visited November 29, 2015).

67. In addition, the edge servers in a given instance of infringement can both be
located within the same point of presence, and the infringement can involve all of the caches in a
given point of presence. Likewise, the servers higher in the distribution hierarchy can also be

located within different points of presence.

21

68. Further the edge server that received the request can serve the content to an end
user acting as a proxy for the other edge server.

69. Also, on information and belief, the edge server that receives the request can
query more than one edge server in overlapping time.

70. On information and belief, both Akamai and XO make and use infringing systems
with respect to each of the acts of infringement described above. Akamai makes infringing
systems that consist entirely of Akamai servers. Likewise on information and belief, XO makes
and uses infringing systems where all of the servers are XO-hosted or operated servers. Further,
when the infringing system includes a combination of Akamai and XO-hosted or operated
servers, Akamai and XO act jointly or in concert to practice the claimed inventions, and the
infringement is not complete until both Akamai and XO have provided or performed their
respective parts.

71. The making, and operation, of the 002 Infringing Products as described above
constitutes infringement of at least the above-mentioned claims of the 002 Patent pursuant to 35
U.S.C. § 271(a).

72. Unless enjoined by this Court, Akamai will continue to infringe the 002 Patent.

73. As a result of Akamai’s conduct, Limelight has suffered and will continue to
suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of Akamai’s infringement of the 002 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT IV AGAINST AKAMALI:
INFRINGEMENT OF U.S. PATENT NO. 8.856.263

74. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth

herein.

22

75. On information and belief, Akamai has infringed and continues to infringe one or
more claims of the 263 Patent, including but not limited to claims 1, 2, 3, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, and 20 pursuant to 35 U.S.C. § 271(a), literally or under the doctrine
of equivalents, by making, using, selliné, and/or offering to sell in the United States without
authority and/or importing into the United States without authority, the Akamai Intelligent
Platform, including a content delivery network with edge servers performing prefetching
additional web pages and content to cache, prior to their being requested by an end user, as well
as services associated therewith, also known as the “Akamai Instant” feature (the 263 Infringing
Products). Based on information and belief, and publicly available documentation, Akamai’s
edge servers accelerate delivery of web content by parsing requested web pages to identify
additional web pages that are likely to be requested by a user system, and storing them to cache.

76. Specifically, Akamai’s edge servers with the Akamai Instant feature meet the
requirements of the claimed systems and methods for accelerating access to resources of web
pages, as reflected by publicly available Akamai documentation. On information and belief,
Akamai’s edge servers include a cache for storing web content that can be used to store web
content that has been “prefetched”—obtained before an end user client has asked for them. For
example, Akamai states the following about the prefetching capabilities of its edge servers:

Before a base page (e.g. home page html) is served from the origin to the client,

the Akamai edge server parses the content and prefetches predefined assets from

the origin before the response is sent to the client, so they can be served from the
edge cache when the client requests them.

“Of Preconnect, Prefetch and Preload,” https://community.akamai.com/community/web-

performance/blog/2015/09/24/of-preconnect-prefetch-and-preload.

77. Akamai’s edge servers with the Akamai Instant feature can parse requested web

pages to identify additional web pages that are likely to be requested by the user system, to

23

request those web pages and their specific content resources from another server before an end
user requests them from the edge server, and store them in its cache. On information and belief,
this ability includes the ability to obtain and store in cache static (non-dynamic) resources, such
as image files. For exam[;le, Akamai states the following about the prefetching capabilities of its
edge servers with Akamai Instant:

In the past, when our customers have had long think-time applications due to
database lookups, Web services calls, or other processing components that slow
down origin response times, there wasn't much we could do to help other than
speed the content once it was ready to be delivered. But by then it is usually too
late. The new Terra Alta feature, Akamai Instant, now lets us tackle that
delivery challenge head on. By designating the most likely next pages to be
visited by users, Terra Alta is able to start the process of gathering content,
making Web service calls, or doing database lookups, before the page is
requested by the user, and pre-fetching that content to the edge of the
Internet, close to users, prior to the user requesting it. We've seen this
improve the performance of these applications by up to 100% over origin delivery.

(emphasis added). “A Few More Tricks From Terra Alta,” https:/blogs.akamai.com/2012/03/a-

few-more-tricks-from-terra-alta.html (last visited November 29, 2015).

78. For example, edge servers with Akamai Instant can prefetch web resources
identified in a first web page with the <a> or <link> HTML elements, which can include

additional web pages, as described at https:/community.akamai.com/community/web-

performance/blog/2015/09/24/of-preconnect-prefetch-and-preload.

79. As deployed and operated, as for example by XO in its data centers, Akamai edge
servers with Akamai Instant include interfaces that enable communication of one or more user
nodes with one or more web servers. For example, Akamai publishes the following images

showing Akamai servers having Ethernet ports:

24

Akamai Hands And Eyes Guide, available at https:/fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X4i_1-5x18 10G_Rear Large.jpg (last visited November 29, 2015).

Akamai Hands And Eyes Guide, available at hitps://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1 2x8 CacheH Rear Largejpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Network Pac

kages.html (last visited November 29, 2015).

80. Further, Akamai’s geographically distributed deployments of its edge servers, as
deployed and operated for example by XO in its data centers, include routers that “allow
Akamai to direct traffic between Akamai's equipment and the providers that Akamai connects to.”

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Router Hard

ware.html. When such equipment is deployed in a manner that connects Akamai’s edge servers
to the Internet, for example by XO in its data centers, it likewise has multiple ports configured to

send and receive data over a connecting network.

25

81. On information and belief, because Akamai edge servers with Akamai Instant are
designed and intended to respond to repeated requests for web content, both from the same end
user device, and from different end user devices, these servers are able to perform the described
prefetching functions for additional requests from end users, including where common resources
are shared between pages.

82. The making, and operation, of Akamai edge servers with Akamai Instant as
described above constitutes infringement of at least the above-mentioned claims of the 263
Patent pursuant to 35 U.S.C. § 271(a).

83. Unless enjoined by this Court, Akamai will continue to infringe the 263 Patent.

84. As a result of Akamai’s conduct, Limelight has suffered and will continue to
suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of Akamai’s infringement of the 263 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT V AGAINST AKAMAI:

INFRINGEMENT OF U.S. PATENT NO. 9,015,348

85. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth
herein.

86. On information and belief, Akamai has infringed and continues to infringe one or
more claims of the 348 Patent, including but not limited to claims 1, 2, 3, 7, 10-16, and 18
pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,
selling, and/or offering to sell in the United States without authority and/or importing into the
United States without authority, the Akamai Intelligent Platform, including a content delivery
network with edge servers that perform automated front end optimization (“FEO”). Based on

information and belief, and publicly available documentation, Akamai’s edge servers perform

26

front end optimization by using attributes associated with content requests to select a set of
content acceleration techniques that will be applied to deliver the requested content, and utilize
performance metrics obtained regarding the delivered content to dynamically improve the
subsequent selection of content acceleration techniques for similar content.

87. Specifically, Akamai’s edge servers with automated front end optimization meet
the requirements of the claimed systems and method for dynamically selecting from among a
plurality of acceleration techniques implemented in a Content Delivery Network (CDN) using
attributes associated with content requests, as reflected by publicly available Akamai
documentation.

88. Based on information and belief, and publicly available documentation, Akamai’s
Accused 348 Products can apply numerous techniques to accelerate the delivery of digital
content to end users, including: combining, compressing, rewriting or otherwise “minifying”
Javascript and CSS elements in web pages; optimizing (including compressing) image and other
media files; running Javascript asynchronously; and reordering web resource delivery. As
Akamai describes:

Front-end optimization reduces the number of requests, makes responses smaller,

and reorders things to optimize rendering in the browser. There are dozens of

different FEO optimization methods available in our service and the list continues

to grow. FEO can reduce the number of requests by combining multiple

JavaScript or CSS files into one download and by embedding small images

directly into CSS. FEO can make responses smaller by minifying JavaScript and

CSS, and by optimizing images. FEO also can unblock rendering of your page by

running JavaScript asynchronously. Images can be made to load on demand, only
as they scroll into view.

“FEO Fundamentals,” available at https://developer.akamai.com/stuff/FEOQ/index.html (last

visited November 29, 2015).
89. Other content acceleration techniques the Accused 348 Products perform include

prefetching web content, optimizing TCP connections, caching the static portions of dynamically

27

rendered web pages (a feature known as EdgeStart), file versioning, domain sharding, and DNS
prefetching. These and other content acceleration techniques the Accused 348 Products perform
are described in Akamai public documentation, including at

https://www.akamai.com/jp/ja/multimedia/documents/white-paper/front-end-optimization-on-

the-akamai-intelligent-platform-white-paper.pdf (last visited November 29, 2015).

90. On information and belief, and as described in Akamai public documentation, the
Accused 348 Products apply content acceleration techniques to requested content selectively,
based in part on configuration files that are maintained by Akamai and its customers:

Akamai‘s edge servers are responsible for processing end user requests and
serving the requested content, as well as for acting as intermediaries in our
overlay network. The platform offers a rich set of functionality and content-
handling features, developed over a decade of experience working with and
supporting many of the most sophisticated websites and applications on the
Internet. These controls not only ensure correct application behavior as
experienced by the end user, but also optimize the performance of Applications
under different scenarios.

An important feature of the edge server platform is its tremendous configurability
via metadata configuration, which allows enterprises to retain fine-grained control
in applying the platform‘s various capabilities to the handling of their content.

“The Akamai Network: A Platform for High-Performance Internet Applications,” available at

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akamai-

network-a-platform-for-high-performance-internet-applications-technical-publication.pdf (last

visited November 29, 2015).

91. On information and belief, and as described in Akamai public documentation, the
Accused 348 Products match attributes of content requests—such as the URL path, or header
data in the request, or other attributes of the request such as end-user location or device type—to
configuration data, to selectively apply content acceleration techniques to requested content:

The metadata system allows these features to be separately configured based on
matching request and response attributes. While the simplest matches are on URL

28

path components, file extensions, and request methods, more advanced metadata
matches can change behavior based on attributes including end-user geographic
location, connection speed, HTTP request and response headers, cookie values,
and many others....Metadata configuration can be set across an entire website, a
portion of the site, a specific category of content, or even for individual files.

“The Akamai Network: A Platform for High-Performance Internet Applications,” available at

https://www.akamai.com/us/en/multimedia/documents/technical-publication/the-akamai-

network-a-platform-for-high-performance-internet-applications-technical-publication.pdf (last

visited November 29, 2015).

92. On information and belief, and as described in Akamai public documentation, the
Accused 348 Products obtain metrics regarding the performance of content acceleration
techniques applied to specific content requests, and use those metrics to improve the selection
and configuration of acceleration techniques that will subsequently be used for similar requests.
For example, Akamai’s public documentation describes its “automated FEO solution” as
follows:

For every end user request, Akamai’s proven technologies are dynamically

applied in a way that optimizes performance for that unique scenario, taking into

account real-time website, network, and end user conditions. Akamai’s FEO
capabilities are an integrated part of these solutions, working in concert with our

other performance, security, and availability offerings to deliver the best possible
experience for every user, on every device, every time.

Front-End Optimization on the Akamai Intelligent Platform,

https://www.akamai.com/jp/ja/multimedia/documents/white-paper/front-end-optimization-on-

the-akamai-intelligent-platform-white-paper.pdf

93. The Accused 348 Products include hardware and software, such as a router, that
provide an interface to a network. For example, Akamai’s geographically distributed

deployments of its edge servers, as deployed and operated for example by XO in its data centers,

29

include routers that “allow Akamai to direct traffic between Akamai's equipment and the
providers that Akamai connects to.” [Akamai Hands And Eyes Guide], available at

https://fieldtech.akamai.com/heguide/Router Hardware.html. When such equipment is deployed

in a manner that connects Akamai’s edge servers to the Internet, for example by XO in its data
centers, it is configured to receive requests from end users, such as from a device browser.

94. The Accused 348 Products include edge servers distributed throughout the United
States and globally, such as those as deployed and operated by XO in its data centers. These edge
servers include memory, storage devices, a processor, and interfaces to connect with a network
interface, and to other edge servers and Akamai hardware and software located elsewhere in its
content distribution network, and to apply selected content acceleration techniques as described
above.

95. For example, on information and belief, to perform their basic role, Akamai’s
edge servers have multiple network ports to send and receive data. As a further example, Akamai

publishes the following images showing Akamai servers having two Ethernet ports:

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X4i_1-5x18 10G_Rear Large.jpg (last visited November 29, 2015).

30

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/images/Serve

r_Hardware/X1 2x8 CacheH Rear Large.jpg (last visited November 29, 2015). Further

information about Akamai’s deployed network interfaces can be found in

Akamai Hands And Eyes Guide, available at https:/fieldtech.akamai.com/heguide/Network Pac

kages.html (last visited November 29, 2015). Likewise, Akamai’s servers include processors:

Server Generations

The following server generations are listed from most recently deployed to no longer being deployed. This a brief overview of each generation's specifications.

Generation Specifications { Partial List)

X8 Intel Broadwell DE

X7 Intel Skylake Intel Haswell £3-1200 V5 series, up to 64 GB Unbuffered DDR4
X6m Intel Haswell £5-2600 V3 series, 16G to 256G DOR4 Registerad
X6 Intel Haswell E3~1200 V3 series, 16G or 32G DDR3

x5 Intel Sandy Bridge E5 2600 EP series, 128GB or 256GB DDR3
Xai Intel lvy Bridge E3-1270 V2, 16G DDR3

X4 Intet Sandy Bridge £3-1270, 16G DDR3

X2 Intel Nehalem X3470, 8G to 32G DDR3

X3 Intel Nehalem X3470, 8G DDR3

G106 AMD Opteron 6204 Quad Core, 64G DDR3

G9 AMD Opteron 4184 Hexa Core, 8G DDR3

G7 AMD Opteron 1388 Quad Core, 8G DDR2

G6 AMD Opteron 2381 Quad Core, BG DDR2Z

GS AMD Athion II 240e Dual Core, 8G DDR3

G4 AMD Opteron 1218 Dual Core, 4G DDR2

G3 AMD Opteron 244, 2G or 4G M DDR1

G2 AMD Opteron 244, 16 or 2G DDR1

Gi AMD Opteron 244, 512M DDR1

Akamai Hands And Eyes Guide, available at https://fieldtech.akamai.com/heguide/Server Hard

ware.html (last visited November 29, 2015).
96. The making, and operation, of the Accused 348 products as described above

constitutes infringement of at least the above-mentioned claims of the 348 Patent pursuant to 35

U.S.C. § 271(a).

31

97. Unless enjoined by this Court, Akamai will continue to infringe the 348 Patent.

98. As a result of Akamai’s conduct, Limelight has suffered and will continue to
suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of Akamai’s infringement of the 348 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VI AGAINST AKAMALI:

INFRINGEMENT OF U.S. PATENT NO. 8,615,577

99. Limelight incorporates and realleges paragraphs 1-33 above as if fully set forth
herein.

100. On information and belief, Akamai has infringed and continues to infringe one or
more claims of the 577 Patent, including but not limited to claims 1, 2, 3, 4, 5,6, 8,9, 11, 16, and
19, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making,
using, selling, and/or offering to sell in the United States without authority and/or importing into
the United States without authority, Akamai’s Image Converter and Image Manager products, as
well as Akamai’s cloud-based video transcoding products (the 577 Infringing Products).

101. The 577 Infringing Products constitute parts of the Akamai content delivery

network, which Akamai illustrates as follows:

32

= .
Slemrrnnd

| Akamai Network Overlay

“Object Delivery,” available at https://developer.akamai.com/stuff/Content_Delivery/Object Del

ivery.html (last visited November 29, 2015).

102. On information and belief, and from publicly available Akamai documentation,
the 577 Infringing Products allow Akamai’s customers to upload image and video content (a
process known as “ingest”). When the content is uploaded, it is determined (based on criteria that
can be set by the customer) whether policies, that can be defined or customized by Akamai’s
customers, apply to the ingested content. When the policies apply, they determine what kind of
processing will be performed to the ingested content, such as video transcoding, or formatting
and alteration of ingested images. The 577 Infringing Products maintain numerous processing
functions that are matched with content by these (premade and customer-defined) policies.
Moreover, the 577 Infringing Products maintain numerous policies that can be applied to
different ingested content. These policies can be triggered based on the processing to be

performed on the content, the location of the content itself, or both.

33

103. On information and belief, the application of these policies can be based on
metadata (which can be stored in a database) of the content itself, information about the end user
that subsequently requests the content, or information related to the provider of the content using
specialized function calls that the patent refers to as “mutators.” Once it is determined which
policy applies to the ingested content, such as a video or image file, the appropriate processing,
such as video transcoding, or image formatting and alteration, is selected for processing that
content. As Akamai explains with respect to video transcoding:

With Akamai, you simply set the initial configuration in the easy-to-use Luna

Control Center and after that, the workflow is a completely automated process.

Upload content to pre-defined watch folders and Akamai handles the rest.

Whether you’re processing one media file or 20,000, the same automated

processes apply. You can also customize advanced transcoding parameters

including number of renditions, video/audio bitrates, bitrate types (VBR/CBR),
frame rate, keyframe rate, and resolution.

“Media Services On Demand Product Brief,” available at https://www.akamai.com/us/en/multim

edia/documents/product-brief/media-services-on-demand-product-brief. pdf (last visited

November 29, 2015). Akamai illustrates its video transcoding services as as follows:

Fow 1 Werks

ety Mty Dewww

34

“Video On Demand Transcoding Product Brief,” https://www.akamai.com/us/en/multimedia/doc

uments/product-brief/vod-transcoding-product-brief.pdf (last visited November 29, 2015).

104. Akamai provides the following explanation of Image Converter capabilities:

Image Converter supports real-time API commands including:

e Downsize — reduce an image’s dimensions.

e Resize — scale images to a specific width and height.

e Crop — crop, or cut out, a section of an image based on dimension and
axis parameters.

e Change Output Quality — compress JPEG images based on a 1 to 100
scale.

e Change Output Format — change JPEG, PNG, GIF & TIFF images to a
specific file type such as JPEG, PNG & GIF.

e Background Color — set the background color for transparent images
using HTML or Hex colors.

e Compose Images — place an image in a specific location on top of another
image e.g. for watermarking.

“Image Converter” available at https://www.akamai.com/us/en/solutions/intelligent-

platform/cloudlets/image-converter.jsp (last visited November 29, 2015). Akamai illustrates

Image Converter as follows:

Resize Change quality round Cambing images Change nutput format

Id.

35

105. As Akamai explains with respect to Image Manager: “Akamai provides
developers with highly customizable policies to accommodate a wide range of image
transformations. Begin with high-quality master images and quickly derive ready-for-web
images that adapt to business, artistic and technical requirements.” “Image Manager Product

Brief,” available at https://www.akamai.com/us/en/multimedia/documents/product-brief/image-

manager-product-brief.pdf (last visited November 29, 2015). Akamai illustrates functionality of

Image Manager as follows:

image Manager
Upload raw image oo 3
G 2 Automatically applies
polices to create and
stare”Ready for Web”
image variants
sizes

Automatically deiivers the best
image for the end user

Fomat & Quality ¢

. . . Other transformations
Hi-Res raw image from Studio

106. “Image Manager Product Brief,” https://www.akamai.com/us/en/multimedia/docu

ments/product-brief/image-manager-product-brief.pdf (last visited November 29, 2015).

107. In addition, on information and belief the policies can be triggered by function
calls that are built into template URLs. As Akamai explains: “Image Converter harnesses the
power of the Akamai Intelligent Platform™ to enable organizations to dynamically manipulate

images in the cloud through appending application programming interface (API) commands to

36

image URLs.” “Image Converter” available at https://www.akamai.com/us/en/solutions/intellige

nt-platform/cloudlets/image-converter.jsp (last visited November 29, 2015).

108. Likewise, as shown above, the functions that process the ingested content can be
an HTTP-based application programming interface (API). See id.

109. The making, and operation, of the 577 Infringing Products as described above
constitutes infringement of at least the above-mentioned claims of the 577 Patent pursuant to 35
U.S.C. § 271(a).

110. Unless enjoined by this Court, Akamai will continue to infringe the 577 Patent.

111. As a result of Akamai’s conduct, Limelight has suffered and will continue to
suffer irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of Akamai’s infringement of the 577 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,750,155

112. Limelight incorporates and realleges paragraphs 1-47 above as if fully set forth
herein.

113. On information and belief, XO has infringed and continues to infringe one or
more claims of the 155 Patent, including but not limited to claims 1, 3, 8, 9, 10, 11, 12, 13, 15,
18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by
making, using, selling, and/or offering to sell in the United States without authority and/or
importing into the United States without authority, hardware and software, content delivery
servers and networks, and data centers that constitute or include 155 Infringing Products because
of their inclusion and performance of the functionality described above with respect to Count I

and the Akamai Intelligent Platform.

37

114. Specifically, XO provides services, networks, and data centers, that host servers
that constitute 155 Infringing Products because they form all or part of CDNs including a
plurality of points of presence that perform functionality related to the Akamai Intelligent
Platform. These points of presence include edge servers that are operated or hosted by XO.
Based on information and belief, and publicly available documentation, XO-operated or hosted
edge servers perform TCP optimization by modifying pre-existing TCP settings based upon
parameters that are determined at least in part with reference to information in the URLs of end-
user requests as described above with respect to Count I including the specific variations
described therein.

115. On information and belief, when XO assembles or configures a server, network,
or data center that includes this functionality, and when it uses such server, network, or data
center to provide services to its customers, these acts constitute acts of direct infringement of the
155 Patent for the same technical reasons explained above with respect to Count I except that in
such instances XO is the direct infringer.

116. Both XO and Akamai make and use infringing systems. On information and
belief, XO makes infringing systems that consist entirely of XO-hosted or operated servers.
Likewise Akamai makes and uses infringing systems where all of the servers are Akamai servers.
Further, when the infringing system includes a combination of XO and Akamai servers, Akamai
and XO act jointly or in concert to perform the infringing acts, and the infringement is not
complete until both XO and Akamai have provided or performed their respective parts.

117. Unless enjoined by this Court, XO will continue to infringe the 155 Patent.

118. As a result of XO’s conduct, Limelight has suffered and will continue to suffer

irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered

38

damages as a result of XO’s infringement of the 155 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT VIII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 7,715,324

119. Limelight incorporates and realleges paragraiahs 1-33 and 48-62 above as if fully
set forth herein.

120. On information and belief, XO has infringed and continues to infringe one or
more claims of the 324 Patent, including but not limited to claims 1, 2, 4, 5, 6, 7, 8, 10, and 11,
pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,
selling, and/or offering to sell in the United States without authority and/or importing into the
United States without authority, hardware and software, content delivery servers and networks,
and data centers that constitute or include 324 Infringing Products because of their inclusion and
performance of the functionality described above with respect to Count II and the Akamai
Intelligent Platform.

121. Specifically, XO provides services, networks, and data centers, which host servers
that constitute 324 Infringing Products because they form all or part of CDNs including a
plurality of points of presence that perform functionality related to the Akamai Intelligent
Platform. These points of presence include edge servers that are operated or hosted by XO.
Based on information and belief, and publicly available documentation, XO-operated or hosted
edge servers perform TCP optimization by modifying pre-existing TCP settings based upon
parameters that are determined at least in part with reference to information in the URLSs of end-
user requests as described above with respect to Count II including the specific variations

described therein.

39

122. On information and belief, when XO assembles or configures a server, network,
or data center that includes this functionality, and when it uses such server, network, or data
center to provide services to its customers, these acts constitute acts of direct infringement of the
324 Patent for the same technical reasons explained above with respect to Count Ii except that in
such instances XO is the direct infringer.

123. Unless enjoined by this Court, XO will continue to infringe the 324 Patent.

124. As a result of XO’s conduct, Limelight has suffered and will continue to suffer
irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of XO’s infringement of the 324 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT IX AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,683,002

125. Limelight incorporates and realleges paragraphs 1-33 and 63-73 above as if fully
set forth herein.

126. On information and belief, XO has infringed and continues to infringe one or
more claims of the 002 Patent, including but not limited to claims 1, 2, 3,4, 5, 7, 8, 9, 10, 13, 15,
16, 17, 18, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents,
by making, using, selling, and/or offering to sell in the United States without authority and/or
importing into the United States without authority, hardware and software, content delivery
servers and networks, and data centers that constitute or include 002 Infringing Products because
of their inclusion and performance of the functionality described above with respect to Count III
and the Akamai Intelligent Platform.

127. Specifically, XO provides services, networks, and data centers, that host servers

that constitute 002 Infringing Products because they form all or part of CDNs including a

40

plurality of points of presence that are distributed geographically and perform functionality
related to the Akamai Intelligent Platform. These points of presence include edge servers that are
operated or hosted by XO. Based on information and belief, and publicly available
documentation, XO-operated or hosted edge servers that do not I;ave user-requested content in
their own caches can ask other edge servers whether they have the requested content in their
caches and if so the content is provided to the user, including the specific variations described
above with respect to Count III.

128. On information and belief, when XO assembles or configures a server, network,
or data center that includes this functionality, and when it uses such server, network, or data
center to provide services to its customers, these acts constitute acts of direct infringement of the
002 Patent for the same technical reasons explained above with respect to Count III except that
in such instances XO is the direct infringer.

129. Both XO and Akamai make and use infringing systems. On information and
belief, XO makes infringing systems that consist entirely of XO-hosted or operated servers.
Likewise Akamai makes and uses infringing systems where all of the servers are Akamai servers.
Further, when the infringing system includes a combination of XO and Akamai servers, Akamai
and XO act jointly or in concert to perform the infringing acts, and the infringement is not
complete until both XO and Akamai have provided or performed their respective parts.

130. Unless enjoined by this Court, XO will continue to infringe the 002 Patent.

131. As a result of XO’s conduct, Limelight has suffered and will continue to suffer
irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of XO’s infringement of the 002 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

41

COUNT X AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8,856,263

132. Limelight incorporates and realleges paragraphs 1-33 and 74-84 above as if fully
set forth herein.

133. On information and belief, XO has infringed and continues to infringe one or
more claims of the 263 Patent, including but not limited to claims 1, 2, 3, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, and 20, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine
of equivalents, by making, using, selling, and/or offering to sell in the United States without
authority and/or importing into the United States without authority, hardware and software,
content delivery servers and networks, and data centers that constitute or include 263 Infringing
Products because of their inclusion and performance of the functionality described above with
respect to Count IV and the Akamai Intelligent Platform.

134. Specifically, XO provides services, networks, and data centers, that host servers
that constitute 263 Infringing Products because they form all or part of CDNs including a
plurality of points of presence that perform functionality related to the Akamai Intelligent
Platform. These points of presence include edge servers that are operated or hosted by XO.
Based on information and belief, and publicly available documentation, XO-operated or hosted
edge servers perform prefetching of additional web pages and content to cache, prior to their
being requested by an end user, as well as services associated therewith, also known as the
“Akamai Instant” feature as described above with respect to Count IV including the specific
variations described therein.

135. On information and belief, when XO assembles or configures a server, network,
or data center that includes this functionality, and when it uses such server, network, or data

center to provide services to its customers, these acts constitute acts of direct infringement of the

42

263 Patent for the same technical reasons explained above with respect to Count IV except that
in such instances XO is the direct infringer.

136. Unless enjoined by this Court, XO will continue to infringe the 263 Patent.

137. As a result of XO’é conduct, Limelight has suffered and will continue to suffer
irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of XO’s infringement of the 263 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT XI AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 9,015,348

138. Limelight incorporates and realleges paragraphs 1-33 and 85-98 above as if fully
set forth herein.

139. On information and belief, XO has infringed and continues to infringe one or
more claims of the 348 Patent, including but not limited to claims 1, 2, 3, 7, 10-16, and 18,
pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making, using,
selling, and/or offering to sell in the United States without authority and/or importing into the
United States without authority, hardware and software, content delivery servers and networks,
and data centers that constitute or include 348 Infringing Products because of their inclusion and
performance of the functionality described above with respect to Count V and the Akamai
Intelligent Platform.

140. Specifically, XO provides services, networks, and data centers, that host servers
that constitute 348 Infringing Products because they form all or part of CDNs related to the
Akamai Intelligent Platform including a content delivery network with edge servers that perform
automated front end optimization (“FEO”). Based on information and belief, and publicly

available documentation, XO-operated or hosted edge servers perform front end optimization by

43

using attributes associated with content requests to select a set of content acceleration techniques
that will be applied to deliver the requested content, and utilize performance metrics obtained
regarding the delivered content to dynamically improve the subsequent selection of content
acceleration techniciues for similar content as described above with respect to Count V including
the specific variations described therein.

141. On information and belief, when XO assembles or configures a server, network,
or data center that includes this functionality, and when it uses such server, network, or data
center to provide services to its customers, these acts constitute acts of direct infringement of the
348 Patent for the same technical reasons explained above with respect to Count V except that in
such instances XO is the direct infringer.

142. Unless enjoined by this Court, XO will continue to infringe the 348 Patent.

143. As a result of XO’s conduct, Limelight has suffered and will continue to suffer
irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of XO’s infringement of the 348 Patent and will continue to suffer such

damages, until an injunction issues, in an amount and manner yet to be determined.

COUNT XII AGAINST XO:

INFRINGEMENT OF U.S. PATENT NO. 8.615.577

144. Limelight incorporates and realleges paragraphs 1-33 and 99-111 above as if fully
set forth herein.

145. On information and belief, XO has infringed and continues to infringe one or
more claims of the 577 Patent, including but not limited to claims 1, 2, 3,4, 5, 6, 8,9, 11, 16, and
19, pursuant to 35 U.S.C. § 271(a), literally or under the doctrine of equivalents, by making,
using, selling, and/or offering to sell in the United States without authority and/or importing into

the United States without authority, hardware and software, content delivery servers and

44

networks, and data centers that constitute or include 577 Infringing Products because of their
inclusion and performance of the functionality described above with respect to Count VI and the
Akamai Intelligent Platform.

146. Specifically, on information and belief, XO provides services, networks, and data
centers, that host servers that constitute 577 Infringing Products because they form all or part of
CDNs related to the Akamai Intelligent Platform including a content delivery network including
the Image Converter, Image Manager, and cloud-based video transcoding products, which store
and apply the claimed policies to ingested content in the various manners described above with
respect to Count VI including the specific variations described therein.

147. On information and belief, when XO assembles or configures a server, network,
or data center that includes this functionality, and when it uses such server, network, or data
center to provide services to its customers, these acts constitute acts of direct infringement of the
577 Patent for the same technical reasons explained above with respect to Count VI except that
in such instances XO is the direct infringer.

148. Unless enjoined by this Court, XO will continue to infringe the 577 Patent.

149. As a result of XO’s conduct, Limelight has suffered and will continue to suffer
irreparable injury, for which it has no adequate remedy at law. Limelight has also suffered
damages as a result of XO’s infringement of the 577 Patent and will continue to suffer such
damages, until an injunction issues, in an amount and manner yet to be determined.

PRAYER FOR RELIEF

150. Limelight respectfully prays for relief as follows:
(a) A judgment that Akamai and XO have infringed and continue to infringe one or more

claims of the Asserted Patents;

45

(b) A judgment awarding Limelight all damages adequate to compensate for Akamai’s
and XO’s infringement, and in no event less than a reasonable royalty for Akamai’s and
XO’s acts of infringement, including all pre-judgment and post-judgment interest at the
maximum rate allowed by law;

(c) A permanent injunction enjoining Akamai, and its directors, officers, employees,
attorneys, agents, and all persons in active concert or participation with any of the
foregoing, from further acts of infringement of the Asserted Patents;

(d) A permanent injunction enjoining XO, and its directors, officers, employees,
attorneys, agents, and all persons in active concert or participation with any of the
foregoing, from further acts of infringement of the Asserted Patents; and

(e) A judgment awarding Limelight such other relief as the Court may deem just and
equitable.

DEMAND FOR JURY TRIAL

Pursuant to Rule 38(b) of the Federal Rules of Civil Procedure, Plaintiff

Limelight demands a trial by jury in this action.

Date: November 30, 2015 Respectfully submitted,

Maya M. Eckstein (Va. Bar No. 41413)
HUNTON & WILLIAMS LLP

951 E. Byrd St.

Richmond, Virginia 23219

Telephone: (804) 788-8788
Facsimile: (804) 343-4630
meckstein@hunton.com

46

Matthew D. Powers (CA Bar No. 104795) (pro hac
vice motion to be filed)

Paul T. Ehrlich (Cal Bar No. 228543) (pro hac
vice motion to be filed)

William P. Nelson (Cal Bar No. 196091) (pro hac
vice motion to be filed)

Aaron M. Nathan (Cal Bar. No. 251316) (pro hac
vice motion to be filed)

TENSEGRITY LAW GROUP, LLP

555 Twin Dolphin Drive, Suite 650

Redwood Shores, CA 94065

Telephone: (650) 802-6000

Facsimile: (650) 802-6001
matthew.powers@tensegritylawgroup.com
paul.ehrlich@tensegritylawgroup.com
william.nelson@tensegritylawgroup.com
aaron.nathan@tensegritylawgroup.com

Attorneys for Plaintiff Limelight Networks, Inc.

47

Exhibit A

azy United States Patent

Harvell et al.

US007715324B1

(10) Patent No.:

US 7,715,324 B1

(54) CONDITIONAL PROTOCOL CONTROL

(75)

(73)

ey
22

(63)

(30)

Mar. 26, 2009

D

(52)

(58)

(56)

6,029,200 A

Inventors: Bradley B. Harvell, Chandler, AZ (US);
Joseph D. DePalo, Peoria, AZ (US);
Michael M. Gordon, Paradise Valley,
AZ (US); Jason L. Wolfe, Gilbert, AZ

Us)

Limelight Networks, Inc., Tempe, AZ
(Us)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Assignee:

Notice:

Appl. No.: 12/625,436

Filed: Nov. 24, 2009

Related U.S. Application Data

Continuation of application No. 12/572,981, filed on
Oct. 2, 2009, which is a continuation-in-part of appli-
cation No. PCT/US2009/038361, filed on Mar. 26,
2009.

Foreign Application Priority Data
[710) YT 2009201833

Int. CL.
HO4J 1/16 (2006.01)
HO4L 12/56 (2006.01)

US.CL ... 370/252; 370/389; 370/412;
370/466
Field of Classification Search 370/252,
370/412, 389, 466

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
2/2000 Beckerman et al.

@s) Date of Patent: May 11, 2010
6,038,603 A 3/2000 Joseph
6,397,246 Bl 52002 Wolfe
6,591,304 Bl 7/2003 Sitaraman et al.
7,367,051 Bl 4/2008 Siegrist et al.
7,480,254 B2 1/2009 Mayer
2003/0074482 Al 4/2003 Christensen et al.
2005/0097212 Al 5/2005 Engel et al.
2005/0210121 Al* 9/2005 Tayloretal. 709/218

* cited by examiner

Primary Examiner—John Pezzlo
(74) Atiorney, Agent, or Firm—Townsend and Townsend and
Crew, LLP

(57) ABSTRACT

In one embodiment, a system for adapting the interoperation
of nodes in an information processing system is disclosed.
The system includes a protocol handler, a protocol attribute
information store and a protocol attribute selector. The pro-
tocol handler manages a first connection and a second con-
nection over the network using a protocol. The protocol
attribute information store holds a plurality of attributes. The
protocol attribute selector evaluates first information related
to a first connection, utilizes the protocol attribute informa-
tion store to determine first protocol attributes corresponding
to the first connection, and communicates the first attributes
for the first connection to the protocol handler. Additionally,
the protocol attribute selector evaluates second information
related to a second connection, utilizes the protocol attribute
information store to determine second attributes correspond-
ing to the second connection, and communicates the second
attributes for the second connection the protocol handler. The
protocol handler uses first attributes for the first connection
and second attributes for the second connection.

11 Claims, 14 Drawing Sheets

/\/400

r418

URI Recelved
from Node

:

420

URI Analyzed for
Contro! Information

}

424

Table Queried for
Attribute(s)

!

428
f

Altiribute(s) Communicated to
TCP Handler

I

432

Connection Established
According to Any Attributes

436

Deliver Content Object
Through Connection

Content
Delivery
System

104

Global Internet

1021

) End User
System(s)

102-2
3

.
End User
System(s)

102n ®
3

End User

FIG. 1

System(s)

108-1

108-2

108-n

/\/100

ared ‘SN

0Y0Z ‘1T Aely

P1JO 1 1394S

Id $TESILL SN

US 7,715,324 B1

Sheet 2 of 14

May 11, 2010

U.S. Patent

voow\,\

jualo

&

44]%

V¢ Ol

JsuisiU| [BQOID

dOlL

s|qel

0¢¢c
N ETETS
sy M—
[090}01d

la|puey ¢

HNFN

ayoe)n
usIuon
<>

0i¢

¥01l

uonoun
syoeny [

--------------------.----...--.-.---------------------.--------.

US 7,715,324 B1

Sheet 3 of 14

May 11, 2010

U.S. Patent

M

¢-00¢

dc¢ ol

E
<>

0¢e

1010893
aINguy
|020j0.g

8o

L

col

EEIEELLTS)

Is|pueH
d01

ayoen
Ju8U0D

(1] 4
uonoun4
ayoen
80¢
90¢

L

U.S. Patent May 11, 2010 Sheet 4 of 14 US 7,715,324 B1

200-3

Client

CPIMDS

Control
Information

FIG. 2C

Global Internet
Protocol

®
c
=l
=
c
Q
O

he

206

Cache
Function
Protocol
Attribute
Selector

Table

210

2121
220

l—
.---...---...--------------.-..-------------

US 7,715,324 B1

Sheet 5 of 14

May 11, 2010

U.S. Patent

M

$-002

0cc

SIOLETE

gy
|090]0.d

Jusiio

ﬂN_\N

&

col

dc Old

}ouiRiu| [BQOID

syoen
Jusjuon

Jo|pueH
dol

HSN

olLe

uolouN4

121"

™ ayoe)

L

80¢
llllllulllllllulllllllltﬂllllllllulllllls

902

U.S. Patent May 11, 2010 Sheet 6 of 14 US 7,715,324 B1

300
304 /\/
URI Requested
from Server
Determine Any
Attributes for URI
Modify TCP with
Attributes
Deliver Content from
Server to Client

Fig. 3

308

312

316

U.S. Patent May 11, 2010 Sheet 7 of 14 US 7,715,324 B1
/\/400
416
URI Received
from Node
l 420

URI Analyzed for
Control Information

I

424

Table Queried for
Attribute(s)

l

428

TCP Handler

Attribute(s) Communicated to

l

432
S

Connection Established
According to Any Attributes

Y

436

Deliver Content Object
Through Connection

Fig. 4

U.S. Patent May 11, 2010 Sheet 8 of 14 US 7,715,324 B1

»/‘/ 500

206-1

L1 104 L2

(&) :
‘ 236-2 @

C3.1, .., C3K
Global Internet
232-1 232-2
N
\
C3.1 2\
c2.1 22,023, C2.4 TN
102-2

102-1

U.S. Patent May 11, 2010 Sheet 9 of 14 US 7,715,324 B1

/\/ 206

~ 220 ~ 248
~ >
Memory
Data store
- 244
~
Processor

252

Network interfaces

FIG. 6

U.S. Patent May 11, 2010 Sheet 10 of 14 US 7,715,324 B1

750-1 1 Data 750-2 1 Data 750-N 1 Data
+ source 1 ~ source 2 we F source N f 740

TR

| v R
f 730
760 N4 TCP handler Icp
720
P 4

PHY/DATA L~ 710

FIG. 7

U.S. Patent May 11, 2010 Sheet 11 of 14 US 7,715,324 B1
s 810
File name Provider File Size Type - Attribs -
logo.gif ABC 50k image === | attrl=no
Index.html ABC 100k text "= | attrl=no
movie.mpg ABC 1GB video "Rt | attrl=yes
r 820
Provider Service Level ane Attribs N
ABC Premium nas attr4=100000, attr6=fast
DEF Standard ann attr4=300000, attr6=slow
FIG. 8A
/r 830

IP Address / Prefix AS # Country . Attribs
123.012.034.0 /24 12345 us was |attr3=25
234.079.091.0 /24 34567 us ann | attr3=40

169.234.056.078 UNK ASIA = attr3=35

(340
AS # Location Service Type | Link utilization LT Attribs -

12345 Tempe, AZ DSL 43% ves attr6=tfast, attr3=25
34567 Chicago, IL Cable 92% e attr6=slow

34567 Atlanta, GA SAT - e attr3=40

FIG. 8B

U.S. Patent May 11, 2010 Sheet 12 of 14 US 7,715,324 B1

C 850
ServerlD BW CPS . Attribs -
E1 725 900 san | attr4=100000, attr6=fast
E56 937 1877 . attr4=300000, attr6=slow
FIG. 8C
I 900
Performance Profile Timing Pacing Send Window Comment
P1 25 1 300000 large file, near user
P2 40 1 175000 large file, latent user
P3 25 0 100000 small file

FIG. 9

U.S. Patent May 11, 2010 Sheet 13 of

on connection C1

System load >
TH1?

yes

AS link
utilization >
TH2?

A

yes

1060 v
Use standard
TCP params
1040
1 Determine RTT
1050

1 1045

Determine large buffer
with less aggressive
TCP timing yes

no

with more aggressive
TCP timing

y {
‘fModify TCP param

Determine medium bufferwr

14

1010
Receive request R1 f

1015

1020

US 7,715,324 B1

f1 000

File size <
TH4?

Disable
TCP pacing;
determine send
buffer size

1055

1065

"\ "

FIG. 10

no (1060)

1035

U.S. Patent May 11, 2010 Sheet 14 of 14 US 7,715,324 B1

1110

Receive request R1 f I1 100

on connection C1

A 4 f 1115
Obtain IP address

Y 1120
Determine geography I

4 1125
Determine AS f

1130

AS Link
utilization >
TH2?

1135 1140

S

Profile=G1 -

Geo Is US &&
onnection Is Cable

1145

1150
L

Profile=G2]

Geo Is US &&
onnection |s DSL2

1160
I

Profile=G3

Geo Is US &&

1170

I

Profile=Custom

\ 4

Connection is UNK
&& Have Info?

1175

Use standard
TCP params

1180
Al

Modify TCP params
based on profile

FIG. 11

US 7,715,324 Bl

1
CONDITIONAL PROTOCOL CONTROL

CONDITIONAL PROTOCOL CONTROL

This application claims priority to Australian Patent Appli-
cation Serial No. 2009201833, filed Mar. 26, 2009, which
claims priority to International Patent Application Serial No.
PCT/US2009/038361, filed Mar. 26, 2009; which are both
incorporated herein by reference in their entirety.

This application also claims priority to U.S. patent appli-
cation Ser. No. 12/572,981, filed Oct. 2, 2009, which is a
continuation-in-part of International Patent Application
Serial No. PCT/US2009/038361, filed Mar. 26, 2009; which
are both incorporated herein by reference in their entirety.

BACKGROUND

This disclosure relates in general to interoperating nodes in
an information processing system, such as an Internet content
delivery system or an Internet transaction acceleration sys-
tem, and, but not by way of limitation, to control of connec-
tion protocols.

In an information processing system, including communi-
cations networks such as the Internet, two or more nodes can
work together, for example exchanging information or shar-
ing resources, using one or more protocols that enable the
participating nodes to interoperate. Nodes need not be physi-
cally distinct from one another, though they may be; nor-
mally, however, nodes are at least logically distinct from one
another in at least some respect. Interoperating nodes may be
operated or managed by a single common authority or by
independent, unrelated authorities. Two or more interoperat-
ing nodes are often independently operated or managed; the
Internet includes many well known examples of the interop-
eration of two or more independently managed nodes.

A protocol can be standardized such that a node using the
standard protocol should be able to interoperate, at least at the
level of the protocol, with any other node using the standard
protocol. Standard protocols that become widely adopted can
permit a node to interoperate with many other nodes. One
such widely adopted standard protocol on the Internet is the
Transmission Control Protocol (TCP), which today enables
almost every device on the Internet to interoperate with
almost every other device. TCP operates at the connection
layer and enables nodes to interoperate with other nodes by
establishing communications connections.

Standard protocols often employ the use of attributes, such
as configurable parameters and selectable algorithms, to per-
mit the protocol to operate effectively in various situations.
For example, TCP controls message size, the rate at which
messages are exchanged, and factors related to network con-
gestion through the use of attributes, including both by the use
of parameters, such as the receive window field used in slid-
ing window flow control and the retransmission timer, and by
the use of algorithms, such as slow-start, congestion avoid-
ance, fast retransmit, and fast recovery algorithms. It is often
the case, in many standard protocols, that at each node the
initial protocol attribute settings to be used for all the com-
munication connections at the node can be independently
specified by the operator of the node.

A protocol can also be customized, which in general
requires that each node have installed customized compo-
nents to enable the custom protocol. Without the customized
components, the node would not be able to fully interoperate
with other nodes using the customized protocol. Although it
therefore may limit the total number of interoperable nodes,
or in the alternative require widespread action to install the

10

15

25

30

35

40

45

50

55

60

65

2

protocol customized components, or possibly both, protocol
customization is used in order to add function, improve per-
formance, increase flexibility, or modify other characteristics
of a standard protocol, or to make available an entirely new
customized protocol. Many customized protocols have been
proposed for use on the Internet.

SUMMARY

In one embodiment, a system utilizing a standard protocol
to enable two or more nodes to interoperate is disclosed. The
protocol attributes specified in the standard protocol are con-
ditionally adapted to the circumstances, use, and/or operating
conditions of the interoperation of the nodes. In another
embodiment a method is disclosed for utilizing a standard
protocol to enable two or more nodes to interoperate, wherein
the protocol attributes specified in the standard protocol are
conditionally adapted to the circumstances, use, and/or oper-
ating conditions of the interoperation of the nodes.

In one embodiment, a system for supplying content objects
over a network is disclosed. The system includes a protocol
handler, a protocol attribute information store, and a protocol
attribute selector. The protocol handler manages a first con-
nection and a second connection over the network using a
standard protocol. The protocol attribute information store
holds a plurality of attributes defined for a plurality of con-
nections. The protocol attribute selector receives first infor-
mation based on a first request for content, identifies first
atfributes corresponding to the connection that will service
the first request for content, provides the protocol handler
with the first attributes for the connection servicing the first
request for content, receives second information based on a
second request for content, identifies second attributes corre-
sponding to the connection that will service the second
request for content, and provides the protocol handler with
the second attributes for the connection servicing the second
request for content.

In another embodiment, a network connection method for
delivering content is disclosed. A first request for content is
received over a network at a server. The first request for
content is evaluated to select first protocol attributes. A first
connection that sends the content from the server to a first
node is configured according to the first protocol attributes. A
second request for content is received over the network at the
server. The second request for content is evaluated to select
second protocol attributes. A second connection that sends
the content from the server to a second node is configured
according to the second protocol attributes, where the first
attributes affect the operation of the protocol differently than
the second attributes affect the operation of the protocol.

In another embodiment, a system for conducting transac-
tions over a network is disclosed. The system includes a
protocol handler, a protocol attribute information store, and a
protocol attribute selector. The protocol handler manages a
first connection and a second connection over the network
using a standard protocol. The protocol attribute information
store holds a plurality of attributes defined for a plurality of
connections. The protocol attribute selector receives first
information based on a first transaction, identifies first
attributes corresponding to the connection that will service
the first transaction, provides the protocol handler with the
first attributes for the connection servicing the first transac-
tion, receives second information based on a second transac-
tion, identifies second attributes corresponding to the connec-
tion that will service the second transaction, and provides the
protocol handler with the second attributes for the connection
servicing the second transaction.

US 7,715,324 B1

3

In another embodiment, a network connection method for
conducting transactions over a network is disclosed. A first
transaction is initiated over a network at a server. The first
transaction is evaluated to select first protocol attributes. A
first connection, servicing the first transaction, between the
server and a first node is configured according to the first
protocol attributes. A second transaction is initiated over the
network at the server. The second transaction is evaluated to
select second protocol attributes. A second connection, ser-
vicing the second transaction, between the server and a sec-
ond node is configured according to the second protocol
attributes, where the first attributes affect the operation of the
protocol differently than the second attributes affect the
operation of the protocol.

Techniques for modifying the performance of a transport
layer protocol in response to a request for content are dis-
closed. A connection can be established between a content
distribution server and an end user computer according to
preconfigured parameters. When a request for content is
received over the connection, the content distribution server
can determine one or more parameters relating to the perfor-
mance of the connection using information from the request.
The content distribution server can modify the connection at
the transport layer according to the one or more parameters.
Thereafter, the transport layer can manage delivery of the
requested content to the end user computer in accordance
with the modified parameters. In various embodiments, the
content distribution server includes a modified TCP protocol
stack which adjusts timing, pacing, and buffer allocation
associated with a connection in response to requests from an
application-layer data source.

In one embodiment, a method for managing delivery of
content in a system comprising a server and an end user
computer is disclosed. The method includes establishing a
first connection at the server for communicating with the end
user computer and receiving a request for content from the
end user computer over the first connection. The method also
includes determining one or more parameters relating to the
performance of the first connection using information from
the request and modifying the first connection at the transport
layer based on the one or more parameters. Modifying the
first connection can be done without notifying the end user
computer. The method also includes sending the requested
content from the server to the end user computer such that the
transport layer manages delivery of the content in accordance
with the modified parameters.

Optionally, the method includes retrieving metadata asso-
ciated with arequested file and modifying the first connection
based on the metadata. Alternatively or additionally, the
method can include selecting a predetermined performance
profile for the first connection using the information from the
request and modifying the first connection based on the pre-
determined performance profile. The method can include
determining a connection type of the end user computer and
a latency characteristic associated with the connection type
and modifying the first connection at the transport layer based
on the latency characteristic. The method can also include
determining a data size of the requested content, measuring a
round trip time between the server and the end user computer
when the data size exceeds a predetermined value, and modi-
fying the first connection at the transport layer based on the
size of the requested content and the round trip time.

In another embodiment, a content distribution server is
disclosed. The server includes a network interface, a proces-
sor, a protocol handler, and a data source. The network inter-
face includes a plurality of ports for sending and receiving
data over a connecting network. The processor is coupled to

20

25

30

35

40

45

50

55

60

65

4

the network interface and manages a plurality of connections
to end user computers. The protocol handler establishes the
connections with the end user computers according to pre-
configured transport layer parameters of the content distribu-
tion server and manages the manner in which data is trans-
mitted over the connections. The data source supplies the
requested content. The data source monitors a first connection
for arequest, determines one or more modified transport layer
parameters based on the request, and directs the protocol
handler to modify the first connection independently of the
other connections based on the one or more transport layer
parameters.

In still another embodiment, a content distribution server is
disclosed. The server includes means for sending and receiv-
ing data over a connecting network, means for managing a
plurality of connections to end user computers, and means for
establishing a connection with each end user computer
according to preconfigured transport layer parameters. The
server includes means for managing data transmission over
the plurality of connections, means for modifying a connec-
tion based on one or more transport layer performance param-
eters, and means for supplying requested content to the end
user computers over the plurality of connections. The server
also includes means for monitoring a first connection for a
content request, means for determining the one or more trans-
port layer performance parameters for the first connection
based on the request, and means for sending the requested
content over the first connection modified by the one or more
transport layer performance parameters.

In yet another embodiment, a computer program product
comprising a computer-readable medium is disclosed. The
computer-readable medium is encoded with one or more
sequences of one or more instructions which, when executed
by a processor, perform steps of establishing a first connec-
tion at the server for communicating with an end user com-
puter and receiving a request for content from the end user
computer over the first connection. The instructions operate
to determine one or more parameters relating to the perfor-
mance of the first connection based on information from the
request and to modify the first connection at the transport
layer using the one or more parameters without notifying the
end user computer. Additionally, the instructions operate to
send the requested content from the server to the end user
computer such that the transport layer manages delivery of
the content in accordance with the modified parameters.

Further areas of applicability of the present disclosure will
become apparent from the detailed description provided here-
inafter. It should be understood that the detailed description
and specific examples, while indicating various embodi-
ments, are intended for purposes of illustration only and are
not intended to necessarily limit the scope of the disclosure,

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of an embodiment of a
content delivery system.

FIGS. 2A, 2B, 2C, and 2D depict block diagrams of
embodiments of a content download pair that sends content
from a server to a client.

FIG. 3 illustrates a flowchart of an embodiment of a process
for modification of the TCP protocol for various connections
to a server.

FIG. 4illustrates a flowchart of an embodiment ofa process
for modifying protocol attributes potentially on a connection-
by-connection basis.

FIG. 5 shows aspects of a content delivery system.

US 7,715,324 B1

5

FIG. 6 is a block diagram of an embodiment of a content
distribution server.

FIG. 7 shows an exemplary content distribution server
protocol stack.

FIGS. 8A, 8B, and 8C show exemplary data elements such
as can be used with a content distribution server.

FIG. 9 shows exemplary performance profiles such as can
be used with a content distribution server.

FI1G. 10 is a flowchart of a process for modifying transport
layer protocol attributes.

FIG. 11 is a flowchart of process for modifying transport
layer protocol attributes.

In the figures, similar components and/or features may
have the same reference label. Further, various components of
the same type may be distinguished by following the refer-
ence label by a dash and a second label that distinguishes
among the similar components. If only the first reference
label is used in the specification, the description is applicable
to any one of the similar components having the same first
reference label irrespective of the second reference label.

DETAILED DESCRIPTION OF EMBODIMENTS

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the disclosure. Rather, the
ensuing description of the preferred exemplary
embodiment(s) will provide those skilled in the art with an
enabling description for implementing a preferred exemplary
embodiment. It being understood that various changes may
be made in the function and arrangement of elements without
departing from the spirit and scope as set forth in the
appended claims.

Referring first to FIG. 1, ablock diagram of an embodiment
of an Internet content delivery system 100 is shown. Gener-
ally, one or more nodes request content from one or more
othernodes. InFIG. 1, a number of end users 108 respectively
use their end user system or client 102 to download and view
content objects from the global Internet 104. The content
delivery system 110 has one or more servers that provide
content object downloads. The content delivery system 110
can include any number of cache servers, application servers,
content servers, service servers, and/or database servers to
provide content to the clients 102. Although this embodiment
shows particular communication pairs, other embodiments
could communicate between any pair of nodes on a network,
including between pairs of clients or between pairs of servers,
and yet other embodiments could communicate among more
than two nodes, such as in a broadcast or multicast implemen-
tation.

With reference to FIGS. 2A, 2B, 2C and 2D, embodiments
of a content download pair 200 that sends content from a
server 206 to a client 102 are shown. A primary embodiment
described here is the interoperation of two nodes 102, 206 on
the Internet communicating using TCP, one node being a
client 102 that requests information, such as web page con-
tent, multimedia, or software downloads, and the second node
being a server 206 that provides information in response to a
request. TCP operates in the transport layer of the seven-layer
Open Systems Interconnection (OSI) model. In other
embodiments, nodes 102, 206 interoperate in ways other than
communication in a network, such as sharing data within a
computer or group of computers across an available system or
intersystem interface; interoperate using communications
networks other than the Internet 104, such as a private com-
munications network; interoperate using the Internet 104 or a
private network using protocols other than TCP, such as UDP,

—_
wn

20

25

40

45

50

60

65

6

RTP, multicast protocols, and other standard protocols in the
transport layer; interoperate using the Internet 104 or a private
network using standard protocols operating in a layer that
underlies the transport layer; interoperate, using standard
protocols and the Internet or a private network, more than two
at a time, such as in clusters or multicast groups; or interop-
erate, using standard protocols and the Internet or a private
network, other than as a client and server, including interop-
erating as peers, as collaborative nodes, or as a group of nodes
under the common control of one or more other nodes or
under the common control of a controller.

In the primary embodiment, the server 206 conditionally
adapts the attributes of the TCP protocol for each TCP con-
nection established by a client 102. Conditionally adapting
the attributes of the TCP protocol does not require changes to
standard TCP protocol implementations at every node, does
not require special components be installed in the TCP pro-
tocol implementation at every node, and therefore does not
comprise implementing a customized protocol as previously
described; rather, the primary embodiment utilizes the stan-
dard TCP protocol and the attributes implemented in it. In
other embodiments, the server conditionally adapts the
attributes of other transport-layer protocols for each session
established by a client 102; the server conditionally adapts the
attributes of other protocols that underlie the transport layer
for each session established by a client 102; the server 206
conditionally adapts the attributes of the TCP protocol or
other protocol for groups of connections or sessions estab-
lished by clients 102; the server 206 conditionally adapts the
attributes of the TCP protocol or other protocol for connec-
tions or sessions established by groups or subsets of groups of
clients 102; the client 102 conditionally adapts the attributes
of the TCP protocol for each TCP connection established; the
client 102 conditionally adapts the attributes of other proto-
cols for each session established; the client 102 conditionally
adapts the attributes of the TCP protocol or other protocol for
groups of connections or sessions; a node conditionally
adapts the attributes of the TCP protocol or other protocol for
each connection or session; a node conditionally adapts the
attributes of the TCP protoco] or other protocol for groups of
connections or sessions; a node conditionally adapts the
attributes of the TCP protocol or other protocol for connec-
tions or sessions established by groups or subsets of groups of
nodes; a controller conditionally adapts the attributes of the
TCP protocol or other protocol for each connection or session
of at least one node of an interoperating group of nodes; a
controller conditionally adapts the attributes of the TCP pro-
tocol or other protocol for groups of connections or sessions
of at least some nodes of an interoperating group of nodes; or,
a controller conditionally adapts the attributes of the TCP
protocol or other protocol for connections or sessions estab-
lished by groups or subsets of groups of nodes.

Software, software modifications, or equivalent function,
may optionally be implemented at a server, client, or node that
sets the conditionally adapted protocol attributes of a connec-
tion or session, but need not be implemented at servers, cli-
ents, or nodes that passively participate in a conditionally
adapted protocol connection or session. Such software, soft-
ware modifications, or equivalent function will only be
needed if existing protocol software or other software on the
server, client, or node does not provide a facility for program-
matically or similarly changing attributes of the protocol that
is used; in this event, software, a software modification, or
equivalent facilities to provide such a programmatic or simi-
lar interface may be implemented.

Conditionally adapting the protocol for each connection or
session, or collection of connections or sessions, results in at

US 7,715,324 B1

7

least one node that, concurrently or over time, uses a protocol
for multiple unrelated connections or sessions wherein the
protocol attributes vary, at least initially and sometimes per-
sistently, from one connection or session to another, most
often varying differently from any ordinary protocol attribute

variations that naturally occur from one connection or session _

to another through use of the standard protocol implementa-
tion among heterogeneous nodes.

In the primary embodiment, TCP connections are estab-
lished in order to use HyperText Transfer Protocol (HTTP) to
communicate information requests from clients 102 to serv-
ers 206 and responses from servers 206 to clients 102. HTTP
is a scheme that operates above, and depends on the presence
of a functioning and reliable protocol at, the transport layer of
the seven-layer model developed in the Open Systems Inter-
connection (OSI) initiative. Other embodiments use applica-
tion-layer protocols other than HTTP in conjunction with
TCP; use TCP alone, i.e., without HTTP; use other protocols;
or, use other application-layer protocols in conjunction with
other protocols. HTTP utilizes Uniform Resource Locators
(URLSs), Uniform Resource Names (URNs), and Uniform
Resource Identifiers (URIs) to identify information. URLs
are used in the primary embodiment. Other embodiments use
URIs, URNS, other identifiers, or other information. A URL
begins with the scheme identifier, which identifies the
namespace, purpose, and syntax of the remainder of the URL.
In the primary embodiment utilizing HTTP, the typical
scheme is “http”. The scheme is followed by a host field,
which contains the IP address or name of the host where the
requested information can be found, optionally followed by a
port number, optionally followed by a path, which is an HTTP
selector, optionally followed by a search portion, which is a
query string. The full URL, then, is an alphanumeric string
containing the scheme, host field, any optional following
strings, and special characters such as “:”, ““/”, and “?” that are
reserved for special functions such as designating a hierar-
chical structure in the URL. Other embodiments could use
different application-layer protocols such as Telnet, File
Transfer Protocol (FTP), secure HTTP (HTTPS), and Simple
Mail Transfer Protocol (SMTP).

In the primary embodiment, the server 206 bases the con-
ditional adaptation of the attributes of the TCP protocol on the
alphanumeric URL string provided by the client 102 in its
information request. In another embodiment, a server, client
or other node bases the conditional adaptation of the attributes
of the TCP protocol or other protocol on the application-layer
protocol specified or on identifying information, equivalent
to a URL, or other information provided in, or characteristic
of, an information request, connection, or session. In other
embodiments, a server, client or other node bases the condi-
tional adaptation of the attributes of the TCP protocol or other
protocol on the IP address of one or more servers, clients, or
nodes; on network information associated with the IP address
of one or more servers, clients, or nodes, including the
Autonomous System (AS) number, identity of network
operator, geographic location, logical or physical network
location, logical or physical network segment, or network
interconnection characteristics associated with the IP
address(es) of one or more servers, clients, or nodes; the
geographic location of the server, client or node; and/or, the
logical or physical network location of the server, client or
node; the logical or physical address of the server, client or
node; the logical or physical name of the server, client or
node; and/or, the network or other path from or to a server,
client or node. In other embodiments a server, client or node
bases the conditional adaptation of the attributes of the TCP
protocol or other protocol on recent network performance

35

40

45

50

60

8

measurements, including latency, jitter, packet loss, round
trip time, and/or the measured variance in a network perfor-
mance measurement across multiple samples; on recent mea-
sures of utilization of a network, network segment, network
interface, or network port; and/or, on recent measurements of
performance or utilization of a server, group of servers, or
server component(s) such as memory, processor, disk, bus,
intersystem interface, and/or network interface. In still other
embodiments, a server, client or node bases the conditional
adaptation of the attributes of the TCP protocol or other
protocol on temporal factors, including time of day; day of
week, month, or year; specific date; occurrence of a holiday or
religious observance; occurrence of a temporal event such as
a news event or sports event; seasonal occurrence; and/or a
scheduled event or time period.

In the primary embodiment, the protocol attribute selector
212 of the server 206 compares the alphanumeric URL string
provided by the client 102 in its information request to a table
220 containing partial or whole URLs and identifies the most
specific match from left to right that it can find in the table
220. In another embodiment, the server 206 compares a sub-
set of the alphanumeric string, for example some or all of the
characters in the query string, or the characters following the
host field up to the first subsequent slash (i.e., “/™), to a table
220. In another embodiment, the client or node 102 makes a
conditional adaptation of protocol attributes, using the alpha-
numeric URL string or a subset of it. In other embodiments,
the alphanumeric URL string or a subset of it is processed to
obtain a value or indicator that is used to determine a condi-
tional adaptation of protocol attributes. In other embodi-
ments, the information used to determine the conditional
adaptation of protocol attributes is identifying information
equivalent to a URL, one or more IP addresses, network
information associated with one or more 1P addresses, net-
work interconnection characteristics associated with one or
more IP addresses, or the geographic location, or logical or
physical network location, of a server, client or node. In other
embodiments, the information used to determine the condi-
tional adaptation of protocol attributes comprises one or more
recent performance measurements or thresholds related to
one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or related to one or more networks, network
segments, network components, or network interfaces, or
groups of network segments, network components, or net-
work interfaces; rates or amounts of variation in one or more
performance measurements or thresholds related to one or
more servers, clients, or nodes, or groups of servers, clients,
or nodes, or related to one or more networks, network seg-
ments, network components, or network interfaces, or groups
of network segments, network components or network inter-
faces; rates or amounts of resource utilization, including uti-
lization related to one or more servers, clients, or nodes, or
groups of servers, clients, or nodes, or components of one or
more servers, clients, or nodes, groups of components of
servers, clients, or nodes, or related to one or more networks,
network segments, network components, or network inter-
faces, or groups of network segments, network components,
or network interfaces; rates or amounts of variation in
resource utilization, including variation in utilization related
to one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or components of one or more servers,
clients, or nodes, groups of components of servers, clients, or
nodes, or related to one or more networks, network segments,
network components, or network interfaces, or groups of
network segments, network components, or network inter-
faces; and/or, thresholds of resource utilization, including
utilization related to one or more servers, clients, or nodes, or

US 7,715,324 B1

9

groups of servers, clients, or nodes, or components of one or
more servers, clients, or nodes, groups of components of
servers, clients, or nodes, or related to one or more networks,
network segments, network components, or network inter-
faces, or groups of network segments, network components,
or network interfaces. -

In the primary embodiment, a table 220 containing partial
or whole URLs for comparison by the protocol attribute
selector 212 is stored on the server 206. In other embodi-
ments, a table 220 containing partial or whole URLs for
comparison, or subsets of the alphanumeric URL string used
for comparison, is stored remotely from the server 206 such
as the embodiment shown in FIG. 2B and the comparison of
the alphanumeric URL string or subset of the alphanumeric
URL string is made at the server 206, or is made at the remote
table storage location or at another location and the result of
the comparison, or an indicator of the result of the compari-
son, or the protocol attributes to be used, are returned to the
server 206. In other embodiments, a table 220 or database of
information used for comparison is stored at the server 206, or
is stored remotely from the server 206 and one or more
comparisons are made at the server 206, or are made at the
remote storage location or at another location, and the results
ofthe comparisons, or one or more indicators of the results of
the comparisons, or the protocol attributes to be used, are
returned to the server 206. In yet other embodiments, a table
220 containing partial or whole URLs for comparison, or
subsets of the alphanumeric URL string used for comparison,
or a database of information used for comparison is stored at
a client or node 102 as is shown in FIG. 2D, or is stored
remotely from a client or node and one or more comparisons
are made at the client or node 102, or are made at the remote
storage location or at another location and the results of the
comparisons, or one or more indicators of the results of the
comparisons, or the protocol attributes to be used, are
returned to the client or node 102. In other embodiments, a
protocol attribute to be used, or an indicator of a protocol
attribute to be used, is extracted from, or derived from, a URL
or equivalent identifying information used by a server, client,
or node; is extracted from, or derived from, address informa-
tion or a whole or partial name of a server, client, or node; is
extracted from, or derived from a user name oridentifier, class
or type of user, group of users, or selection of users, optionally
as associated with a service, server, client, or node; is
extracted from, derived from, or associated with, an applica-
tion or class or group of applications, a service or class or
group of services, or a database or equivalent source of data or
a class or group of databases or sources of data; is extracted
from, or derived from, the identifier of a standard protocol, a
standard protocol message (for example, a TCP SYN), the
protocol-level content of a message, or protocol message
headers or equivalent information; is derived from all or a part
of the time, all or a part of the date, or all or a part of the
duration since a time or date; is determined according to a
sequence or progression; and/or, is determined randomly or
pseudo-randomly.

After one or more comparisons are made, or after the
extraction or derivation of a value, or after an association or
determination is made, the server, client, or node will have
one or more values it can use as protocol attributes or as
indicators of which protocol attributes to use; or, if there has
not been a determination of a condition resulting in one or
more protocol attribute values to use, then in the primary
embodiment the server 206 will use the standard values for
the protocol attributes as configured for the server 206, and in
other embodiments, the server, client, or node will use the
standard values as configured for it for some or all of the

35

50

60

65

10

protocol attributes; the server, client, or node will use another
default value for some or all of the attributes; the server,
client, or node will use the last-used values for some or all of
the attributes; or, the server, client, or node will use randomly,
pseudo-randomly, or arbitrarily determined values for some
or all of the attributes.

In the primary embodiment, the server 206 is a cache
server, typically operating in a group of cache servers, and
groups of cache servers are distributed at numerous points on
the global Internet. The server 206 includes a cache function
208 coupled to a content cache 210 1o provide caching of
content for the server 206. In another embodiment, the server
206 is a cache server operating individually, or independently
from other cache servers. In other embodiments, the server
206 is a content server that provides content; a content server
operating in a group of content servers; a content server
operating in a group of content servers distributed at numer-
ous points on the global Internet; an application server that
supports one or more applications; an application server oper-
ating in a group of application servers; an application server
operating in a group of application servers distributed at
numerous points on the global Interet; a service server that
provides one or more services; a service server operating in a
group of service servers; a service server operating in a group
of service servers distributed at numerous points on the global
Internet; a database server that provides data; a database
server operating in a group of database servers; a database
server operating in a group of database servers distributed at
numerous points on the global Internet; a server operating in
a heterogeneous group of servers; or, a server operating in a
heterogeneous group of servers distributed at numerous
points on the global Internet.

In the primary embodiment, each server 206 has an iden-
tical copy of a table 220 containing partial or whole URLs to
which the alphanumeric URL string provided by the client
102 in its information request will be matched if possible,
along with an indjcator of the protocol attribute values to be
used when that match occurs or the actual protocol attribute
values themselves to be used when that match occurs. The
table 220 can be modified from time to time, including adding
new entries, changing the contents of existing entries, and
deleting entries. Any time that a new version of the table 220
is created, copies of that version are distributed to servers 206
in the global group of cache servers. Optionally, the table 220
can have an expiration date and time, after which the server
206 will stop using the table 220 if it is out-of-date and has not
been replaced with an updated table. In the primary embodi-
ment, the conditional protocol control information is com-
bined with other information distributed to servers 206 so as
to minimize to the extent practicable the number oftables 220
that are distributed to, and synchronized among, the global
group of servers; in another embodiment, this combination
and minimization is not implemented; and this combination
and minimization is not done in most or all other embodi-
ments.

In other embodiments, the conditional protocol informa-
tion may be in the form of a table 220 as in the primary
embodiment, or may be in the form of multiple tables, or may
be in the form of one or more data files, one or more databases,
one or more calculated or derived elements, one or more
calculated or derived groups of elements, one or more indi-
vidual equations or formulas, one or more groups of equa-
tions or formulas, one or more individual expressions, one or
more groups of expressions, one or more individual programs
or routines, one or more groups of programs or routines, one
or more individual listings, one or more groups of listings,
and/or other forms equivalent to any of these.

US 7,715,324 B1

11

In other embodiments, the conditional protocol control
information contains partial or whole URLs to which the
alphanumeric URL string provided by the client 102 in its
information request will be matched if possible, along with an
indicator of the protocol attribute values to be used when that
match occurs or the actual protocol attribute values them-
selves to be used when that match occurs, and is the same for
each server 206 at a location, but varies from one location to
another; is the same for each server in a region, but varies
from one region to another; or, is different at each server. In
other embodiments the conditional protocol control informa-
tion contains partial or whole URLs to which the alphanu-
meric URL string used by a client or node 102 will be
matched if possible, along with an indicator of the protocol
attribute values to be used when that match occurs or the
actual protocol attribute values themselves to be used when
that match occurs, and the conditional protocol control infor-
mation is identical at each client or node 102; is the same for
each client or node 102 in a group, but varies from one group
of clients or nodes 102 to another; is the same for each client
or node 102 in a region, but varies from one region to another;
or, varies from one client or node 102 1o another client or node
102.

In other embodiments, the conditional protocol control
information contains other comparison information that will
be matched, if possible, along with a corresponding indicator
of the protocol attribute values to be used when that match
occurs or the corresponding actual protocol attribute values
themselves to be used when that match occurs, and each
server, client, or node has an identical copy of the conditional
protocol control information; the conditional protocol control
information is the same for each server, client, or node at a
location, but varies from one location to another; the condi-
tional protocol control information is the same for each
server, client, or node in a region, but varies from one region
to another; the conditional protocol control information is the
same for each server, client, or node in a group, but varies
from one group to another; or, the conditional protocol con-
trol information varies from one server, client, or node to
another. In these embodiments, the comparison information
can include subsets of the alphanumeric URL string; identi-
fying information equivalent to a URL; one or more IP
addresses; network information associated with one or more
IP addresses; network interconnection characteristics associ-
ated with one or more IP addresses; the geographic location,
or logical or physical network location, of a server, client, or
node; a value of a performance measurement or threshold; a
rate or amount of variation in a performance measurement or
threshold; a rate or amount of resource utilization; a rate or
amount of variation in resource utilization; a threshold of
resource utilization; addresses, names, classes, types, or
group identifiers of servers, clients, nodes, users, applica-
tions, services, databases, or other data sources; protocol
identifiers, protocol message identifiers or attributes, or pro-
tocol message headers or attributes; times, dates, or intervals;
and/or, sequences, ratios, progressions, equations, randomly
generated data, or arbitrarily determined data.

In embodiments where the conditional protocol control
information is not identical at all servers, clients, or nodes,
optionally a system can create conditional protocol control
information for each location, region, server, client, or node,
and optionally can manage the distribution of the conditional
protocol control information to each location, region, server,
client, or node. For partial or whole URLs, subsets of a URL
alphanumeric string, or other comparison information that
will be compared, a conditional protocol information man-
agement and distribution system (CPIMDS) optionally gen-

10

15

25

30

35

40

45

50

55

60

65

12

erates, or stores, or generates and stores, protocol attributes
for any or all of a server, all servers, a subset of servers, a
location, all locations, a subset of locations, a region, all
regions, a subset of regions, a group, all groups, a subset of
groups, an application, all applications, a subset of applica-
tions, a service, all services, a subset of services, a database or
data source, all databases or data sources, a subset of data-
bases or data sources, a protocol, all protocols, a subset of
protocols, a client, all clients, a subset of clients, a node, all
nodes, a subset of nodes, or a combination of some, a subset
of, a subset of some of, or all of, servers, locations, regions,
groups, applications, services, databases or data sources, pro-
tocols, clients, or nodes; and optionally generates, or stores,
or generates and stores, default protocol attributes to be used
in the absence of a matching comparison for any or all of a
server, all servers, a subset of servers, a location, all locations,
asubset of locations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, an application, all
applications, a subset of applications, a service, all services, a
subset of services, a database or data source, all databases or
data sources, a subset of databases or data sources, a protocol,
all protocols, a subset of protocols, a client, all clients, a
subset of clients, a node, all nodes, a subset of nodes, or a
combination of some, a subset of, a subset of some of, or all
of, servers, locations, regions, groups, applications, services,
databases or data sources, protocols, clients, or nodes. The
CPIMDS also optionally generates, or stores, or generates
and stores, one or more rules for determining which of the
server, location, region, group, application, service, database
or data source, protocol, client, node, or combined values to
use when determining a comparison to be included in the
conditional protoco] control information for a server, all serv-
ers, a subset of servers, a location, all locations, a subset of
locations, a region, all regions, a subset of regions, a group, all
groups, a subset of groups, an application, all applications, a
subset of applications, a service, all services, a subset of
services, a database or data source, all databases or data
sources, a subset of databases or data sources, a protocol, all
protocols, a subset of protocols, a client, all clients, a subset of
clients, a node, all nodes, a subset of nodes, or a combination
of some, a subset of, a subset of some of, or all of, servers,
locations, regions, groups, applications, services, databases
or data sources, protocols, clients, or nodes; optionally gen-
erates, or stores, or generates and stores, one or more rules for
determining when to create, or distribute, or create and dis-
tribute, conditional protocol control information for or to a
server, all servers, a subset of servers, a location, all locations,
a subset of locations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, a client, all clients, a
subset of clients, a node, all nodes, a subset of nodes, or a
combination of some or all of servers, locations, regions,
groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes; optionally generates, or stores, or generates and
stores, one or more rules for determining whether, and if so
when, any conditional protocol control information shall
expire; optionally includes an expiration value with some or
all of the conditional protocol control information; and,
optionally distributes conditional protocol control informa-
tion to a server, all servers, a subset of servers, a location, all
locations, a subset of locations, a region, all regions, a subset
of regions, a group, all groups, a subset of groups, a client, all
clients, a subset of clients, a node, all nodes, a subset of nodes,
or a combination of some or all of servers, locations, regions,
groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes.

US 7,715,324 B1

13

In embodiments where the conditional protocol control
information is maintained separately from each server, client,
or node, the conditional protocol control information can
optionally include, or can optionally correlate to, an indica-
tion of for which servers, locations, regions, groups, applica-
tions, services, databases or data sources, protocols, clients,
nodes, or supersets, subsets, or combinations thereof, the
conditional protocol control information can be used in
adapting protocol attributes. The conditional protocol control
information can be maintained at a single location or multiple
locations; if maintained at multiple locations, each location
can maintain a complete copy of all conditional protocol
control information, or each location can maintain a copy of
a subset of the conditional protocol control information.
Optionally, a conditional protocol information management
and distribution system can create conditional protocol con-
trol information for, and optionally distribute conditional pro-
tocol control information to, each conditional protocol con-
trol information location, groups of conditional protocol
control information locations, or all conditional protocol con-
trol information locations. If conditional protacol control
information locations store a subset of the conditional proto-
col control information, participating servers, clients, or
nodes can optionally use a table, ordered table, shuffled table,
directory, logical name translation system, or information
obtained from, or received from, another server, client, node,
or controller, to determine which conditional protocol control
information location to receive conditional protocol control
information from.

Referring next to FIG. 3, an embodiment of a process 300
for modification of the TCP protocol for various connections
1o a server 206. In summary, in the primary embodiment two
nodes on the Internet communicate using TCP, one node
being a client 102 that requests information in block 304, such
as web page content, and the second node being a cache server
206 that provides information in response to a request. The
cache server 206 operates as one of a group of cache servers,
and groups of cache servers are distributed at numerous
points on the global Internet. TCP connections are established
in order to use HTTP to communicate information requests
from clients 102 to servers 206 in block 304 and responses
from servers 206 to clients 102. HTTP utilizes URLs; each
URL begins with the scheme “http”, which is followed by a
host field containing the IP address or name of the host where
the requested information can be found, followed by a path,
which will be used at the server 206 to locate the requested
object or information, optionally followed by a query string.
Thus, the full URL typically is an alphanumeric string con-
taining the scheme, host field, path, and any optional query
string, each part of which is separated from the other parts by
special characters such as *“:”, “/”, and “?”. Thus, an example
URL referencing content that can be served by the cache
server 206 in the primary embodiment might look like:

http://customerl .webserving.com/folderB/directory/
logo.gif

optionally followed by “?” and a query string. A client 102
requesting this object would send an HTTP message using an
HTTP method called “GET” to the server 206 identified by
the hostname “customerl.webserving.com” in block 304.
The server identification is accomplished through a DNS
translation of the hostname into one or more IP addresses. The
Domain Name System (DNS) is the name translation system
used in the Internet. The HTTP GET message sent to the
server 206 typically includes part or all of the URL that the
client 102 is requesting. In block 308, some or all of the URL

25

30

40

45

50

65

14

is compared with entries in the table 220 to determine the
attributes to use for the connection as described further below.

In the primary embodiment, in block 312 the server 206
conditionally adapts the attributes of the TCP protocol for
each TCP connection established by a client 102. Condition-
ally adapting the attributes of the TCP protocol does not
require changes to standard TCP protocol implementations at
every node, i.e., any client 102 that supports standard TCP
(which virtually all Internet and all World Wide Web clients
do) can communicate with the server 206 to get the object via
a conditionally adapted TCP connection, but may require a
modification to the server’s TCP protocol handler to allow
changes to be made to the TCP protocol attributes by another
program, or on a per-connection basis, or both. Where the
TCP protocol handler provides a facility for programmati-
cally making these changes, the content serving application
may require an interface enabling it to communicate condi-
tionally adapted TCP protocol attributes to the TCP protocol
handler. In the primary embodiment, a set sockets statement
can be used to communicate conditionally adapted TCP pro-
tocol attributes from the content serving application to the
TCP handler 214, which can be a modified TCP sofiware
stack that accepts and implements changes to the TCP proto-
col attributes on a per-connection or per-request basis. In
various embodiments, the TCP handler could be imple-
mented in software or hardware or both, and can be imple-
mented as part of a node or separately from the node, for
example in a switch or other device that provides protocol
services.

Conditionally adapting the protocol for each connection
results in the server 206 concurrently using the TCP protocol
for multiple unrelated connections, wherein the TCP protocol
attributes vary, at least initially and sometimes persistently,
from one connection to another. At block 316, the requested
object or information is sent from the server 206 to the client
102. When a requested object or information is delivered
without any change to the TCP protocol attributes, the stan-
dard TCP protocol attributes pre-configured for the TCP pro-
tocol handler are used; but when the requested object or
information is delivered with conditionally adapted TCP pro-
tocol attributes, the conditionally determined TCP protocol
attributes are used instead of the standard pre-configured TCP
attributes.

A typical caching content server 206 in actual operating
use in a web hosting service provider environment may typi-
cally service 2,000 to 3,000 requests per second, across 100 to
200 (or more) customers. If half of these requests will use
changed TCP protocol attributes and half will not, then on
average, half of the connections managed by the server 206 at
any one point in time would use the changed TCP protocol
attributes and half would use the standard TCP protocol
attributes as pre-configured in the TCP handler 214. Addi-
tionally, if there are five separate (different) changed TCP
protocol attribute sets across which those requests using
changed TCP protocol attributes are evenly distributed, then
on average at any one point in time a server 206 would
concurrently be operating TCP connections with six different
sets of TCP protocol attributes: 50% of'the connections would
utilize standard pre-configured TCP protocol attributes, and
10% would utilize each of the five possible changed TCP
protocol attribute sets.

In the primary embodiment, the server 206 bases the con-
ditional adaptation of the attributes of the TCP protocol on the
alphanumeric URL string provided by the client 102 in the
HTTP GET message. In the primary embodiment, the condi-
tional protocol control information is in the form of a table
220 containing partial and/or whole URLs for comparison,

US 7,715,324 B1

15

the table 220 is stored on the server 206, and the table 220 is
generally kept reconciled on all servers 206. The server 206
compares the alphanumeric URL string provided by the client
102 inthe GET request to the table 220 and identifies the most
specific match from left to right that it can find in the table 220
in block 308. Taking our earlier example and assuming a
simplified table, the sole Table shows mappings from whole
and/or partial URLs into TCP attribute sets comprising spe-
cific protocols attributes (identified as “attrl”, “atir2”,
“attr3”, etc.) to beused and the appropriate value or setting for
that use of that attribute.

Table Mapping to TCP attribute sets

Partial URL TCP Attribute Set

http://customerl.webserving.com/folderA/ attrl = yes, attr3 = 25,
attr4 = low

attn = no, attr2 = 1,
attr4 = high

attr3 = 50, attr6 = fast

httpi//customerl .webserving.com/folderB/

fastnet.com
http://customer2.webserving.com/
hitp://customer3.webserving.com/ attrl = yes, attr3 =25,

attr4 = low

The URL in the example above, “http://
customer].webserving.com/folderB/directory/logo.gif,”

10

15

20

25

would be matched against the second line-entry in the table. .

The TCP protocol attribute set (group of TCP protocol
attributes) to be used for the TCP comnection that services, or
responds to, this HTTP GET message from this client 102
would be “attrl=no, attr2=1, attrd=high” and the TCP proto-
col attributes for this TCP connection would be set accord-
ingly. This simplified table example also illustrates that the
scheme and host name may be sufficient for a matching entry,
such as in the case of the entry “http://
customer3.webserving.com,” or the host name alone may be
sufficient, such as in the case of the entry “fastnet.com.” This
simplified table example also illustrates that there may be a
null entry in the table, as in the case of “http:/
customer2.webserving.com™; in this simplified table
example, the null entry signifies use of the standard pre-
configured TCP protocol attributes. Note that an actual table
in the primary embodiment would contain more information
than the simplified example table shown here, as discussed.

The table 220 can be modified from time to time, including
adding new entries, changing the contents of existing entries,
and deleting entries. When a new version of the table 220 is
created, copies of the new version of the table 220 are distrib-
uted to the servers 206 in the global group of cache servers.
Optionally, the table 220 can have an expiration date and time,
after which the server 206 will stop using the table 220 ifit is
out-of-date and has not been replaced with an updated table
220; under this condition, the server 206 would then use the
standard TCP protocol attributes for connections until the
server 206 received an updated or unexpired table 220.

In the primary embodiment, the conditional protocol con-
trol information is combined with other information, such as
customer billing codes and other customer-specific informa-
tion, that is distributed to all servers 206, in order to minimize
the number of tables that are distributed to, and reconciled
throughout, the global group of servers. This embodiment has
the advantage of simplifying administration, change manage-
ment, and rollback in the event that distribution of a new table
220 causes a problem or error condition, but the disadvantage
that the conditional protocol adaptation is the same for any
given entry in the table 220 at every server 206, regardless of

30

35

40

45

50

55

60

65

16

the server’s location or other factors. In other embodiments,
as discussed, the conditional protocol control information can
vary from one server 206 to another.

Referring to FIG. 4, an embodiment of a process for poten-
tially modifying protocol attributes on a connection-by-con-
nection basis is shown. The depicted portion of the process
begins in block 416 where a uniform resource indicator (URI)
is requested by the client 102. The cache function 208 of the
server 206 receives the request for the content object. The
URI is evaluated by the protocol attribute selector 212 to find
amatch to something in the table 220. The table 220 is queried
in block 424 for any attributes. Retrieved attributes are com-
municated to the TCP handler 214 in block 428. The connec-
tion is established in block 432 according to the selected
attributes to connect the end user system 102 with the server
206. The content object is delivered in block 436. This pro-
cess is performed on each URI such that each connection or
socket can be independently controlled, if desired. Indeed,
two different end user systems 102 could request the same
content object and it could be delivered in a very different
manner with different selected protocol attributes for each
user.

Referring to FIG. 5, a block diagram of an embodiment of
a content delivery system 500 is shown. Content delivery
system 500 operates in a manner that is similar to the content
delivery systems of FIGS. 1-2 and therefore the description of
those systems is also applicable to the present embodiment.
While continuing reference will be made to the preceding
embodiments, in the interest of clarity, the discussion of com-
mon elements and functionality will not be repeated.

As illustrated, end user computers 102 access the global
internet 104 through autonomous systems 232. Autonomous
systems 232 may include internet service providers which
offer end users access to the global internet 104 over a private
communication network. Different providers may offer dif-
ferent types of service and may serve different geographic
areas. For example, autonomous system AS1 can represent a
DSL communication network such as those operated by
AT&T or Qwest Communications, or it could be a cable
access network such as those operated by Cox Communica-
tions in the United States, or by Rogers Communications in
Canada. Autonomous system AS2 could be a satellite com-
munication network, a cellular network, a WiMAX (IEEE
802.16) network, Wi-Fi™ (IEEE 801.11) access, and the like.
Depending upon the underlying communications technology,
autonomous systems 232 can present different network char-
acteristics that are relevant to the performance of a transport
layer protocol such as TCP.

Content delivery servers 206 are also connected to the
global internet 104 and can be connected to corresponding
autonomous systems 232. As shown, content server 206-1 is
connected to autonomous system 232-1 by router 236-1 and
content server 206-2 is connected to autonomous system
232-2 by router 236-2. Routers 236 thus provide direct links
L1, L2 between servers 206 and their corresponding autono-
mous systems 232. In some embodiments, servers 206-1,
206-2 can be edge servers that are collocated with the autono-
mous system network infrastructure and provide large band-
width and fast response times for content distribution to end
users in a particular location. In an exemplary embodiment,
each server 206 is configured to handle approximately 2000
connections per second and can support a 10 Gbps link to its
corresponding autonomous system. Of course, the number of
servers, number of connections, and data rates may vary
based on the location served, traffic patterns, hardware capa-
bilities, and other factors.

US 7,715,324 Bl

17

Servers 206 also communicate with origin server 240. Ori-
gin server 240 can act as a source of the content distributed to
end users. For example, servers 206 may cache content
received from origin server 240 and may use the cached
content to fulfill end user requests. If requested content is not
found in their respective caches, servers 206 can send a
request for the missing content to origin server 240. When
requesting content, servers 206 can report information about
the content request as well as the conditionally adapted pro-
tocol parameters to the origin server 240. The origin server
240 can collect, compile, and distribute information to servers
206 for use in adapting connection parameters. For example,
the origin server 240 can function as part of a CPIMDS and
can distribute URL tables 220 and other protocol perfor-
mance information to servers 206 as previously discussed.

FIG. 6 is a functional block diagram of content distribution
server 206 according one embodiment of the present inven-
tion. As shown, server 206 includes a processor 244, memory
248, one or more network interfaces 252, and a data store 220.
Although not shown, server 206 can also include a cache
function 208 and a content cache 210 as previously described.

Network interfaces 252 can include a plurality of ports
(P1,...,PN)for sending and receiving data over a connecting
network. In some embodiments, at least one network inter-
face is dedicated to providing a high-bandwidth link to an
autonomous system and can be matched to its particular net-
work characteristics. Additional ports and/or network inter-
faces can provide access to the global internet 104, origin
server 204, or other parts of a content delivery system.

Processor 244 executes programmable instructions for
managing the delivery of content to end user computers 102
and can include one or more general purpose microprocessors
or application-specific hardware elements. As shown, proces-
sor 244 is coupled to memory 248 which can include any
combination of volatile or non-volatile computer-readable
storage such as random access memory (RAM), read only
memory (ROM), magnetic disk storage, and the like.
Memory 248 can provide a data store 220 which, as previ-
ously described, can be a table or other data structure includ-
ing information for modifying transport layer performance
parameters. Data store 220 is discussed further in connection
with FIG. 8.

Server 206 can include a number of data sources which
respond to content requests from end users. In one embodi-
ment, processor 244 supports a protocol stack that enables
changes affecting the performance of the transport layer to be
made from higher layers in the stack on a per-connection or
per-request basis. This enables server 206 to receive a content
request from an end user computer over an existing connec-
tion, gather information about the request, and intelligently
modify the performance of the connection based on informa-
tion from the request. In this way, for example, server 206 can
modify TCP performance parameters based on known char-
acteristics of the connecting network, the geographic location
of the end user, metadata associated with the requested con-
tent, a service level of the content provider, link utilization, or
any combination of these and other factors.

FIG. 7 illustrates a modified TCP protocol stack 700 such
as can be included as part of content server 206 according to
one embodiment of the present invention. As shown, layers
710-740 correspond roughly to layers of the standard OSI
network model. At the lowest layers 710 in the protocol stack
(physical and data link layers), data bits are received at the
network interface hardware and assembled into data units for
delivery to the next higher layer. Here, a network layer 720
includes an IP module that receives IP packets from the lower
layers and determines an appropriate transport layer protocol

10

25

30

35

40

45

50

55

60

65

18

based on their header information. With transport control
protocol, network layer 720 sends TCP messages 10 the trans-
port layer 730 which, in turn, passes application messages to
data sources 750 in the application layer 740.

In operation, an end user computer 102 can establisha TCP
connection with content server 206. The connection can be
created using a collection of TCP parameters which are pre-
configured at the server and do not necessarily reflect infor-
mation about the end user or the way in which the end user
computer is connected to the server. For example, referring
again to FIG. 5, computer 102-1 can initiate a connection
C2.1 with server 206-1 to start a TCP session. Once the
connection is established, the end user can send a content
request aver the connection. As illustrated, a single end user
computer 102 can establish multiple connections to a given
server 206 and each connection can carry multiple content
requests. Protocol stack 700 is configured such that TCP
settings can be adjusted on a per-connection or even a per-
request basis.

When a content request is received at server 206, it is
conveyed through protocol stack 700 to an appropriate data
source 750 in the application layer 740. For example, a web
server 750-1 can respond to requests for web pages, a caching
application 750-2 can respond to file requests, and an appli-
cation server 750-N can respond to requests for application
services. Server 206 can include any number or arrangement
of data sources 750 and each data source can respond to
multiple content requests.

Each data source 750 can interact with a TCP handler 760
at the transport layer 730 to modify its connections. In one
embodiment, TCP handler 760 enables the data sources (o
modify the timing at which packets are sent to the end user
computer to be more or less aggressive based on information
gathered from the content request. TCP handler 760 can also
modify the pace at which packets are sent. Pacing can indicate
that a burst of packets should be sent as soon as possible or
that data transmission should be spread out over time. The
maximum TCP send window (“send buffer size™) for a con-
nection can also be adjusted. For example, in some embodi-
ments, TCP handler 760 can adjust the maximum send buffer
to be a multiple of a standard size and can permit buffer
utilization to increase until it reaches the maximum size.
Alternatively, TCP handler 760 can vary the number of bytes
allocated for a particular connection directly.

Generally speaking, each content request has at least two
pieces of information. These include a source address of the
end user computer and an identifier corresponding to the
requested content. For example, a data source 750 that
responds to the request for sample URL, http://
customerl.webserving.com/folderB/directory/logo.gif,
would know the IP address of the requesting computer (e.g.,
abc.def.ghi) as well as the file name of the requested content
(logo.gif). From this starting point, server 206 can obtain
additional information from data store 220 with which to
modify the transport layer parameters of the TCP connection.

FIGS. 8A-8C illustrate partial exemplary data elements
810-850 such as can be maintained in data store 220 and used
for determining modified parameters for a TCP connection.

FIG. 8A illustrates exemplary data corresponding to a
requested content object. In particular, table 810 can repre-
sent a collection of metadata 810. Metadata for each
requested object can include a file name, file size, file type,
and content provider as well as TCP attributes associated with
the content object. For example, attr] can represent pacing on
the TCP connection. In some embodiments, pacing is dis-
abled for small files and enabled for large files. This can
permit content requests involving a large number of small

US 7,715,324 Bl

19

files to be fulfilled with quick bursts and can facilitate a more
even delivery of large content. TCP attributes can also corre-
spond to the type of data such as whether the requested
content is text or video information.

Table 820 includes information about content providers.
Each content object can be associated with a content provider.
The associated content provider can be identified in the file
metadata or it can be determined from the URL of the content
request. In some cases, content providers can select a service
level for the distribution of their content on the content deliv-
ery system. Among other possibilities, requests for content
from providers that choose a premium service level can be
biased in favor of increased performance. For example,
requests for provider ABC’s content can be preferentially
modified (e.g., attr6=fast) and, when appropriate, can be allo-
cated a relatively larger send buffer (e.g.. attr4d=300,000). By
contrast, requests for provider DEF’s content at the standard
service level can be assigned a smaller send buffer (attrd=100,
000) and modified only on a best efforts basis (attr6=slow).
Service level can also set on a per-request basis. For example,
a customer can elect a high level of service by adding infor-
mation to the request query string.

FIG. 8B illustrates exemplary data corresponding to the
network address of an end user computer. Table 830 provides
an association between IP address, geographic location, and
autonomous system number. A source IP address can be
obtained from TCP header information and used to identify a
geographic region of the end user computer. The geographic
region can be a city, state, country, or continent and can
provide a rough estimate of the distance or round trip time
from the server 206 to the end user computer. In addition,
geographic location can also be a rough indicator of service.
For example, network communications in Asia may be char-
acterized by a higher latency than network connections in
Europe or some other location. These differences can be
factored into the TCP attributes so that, for example, more
aggressive timing parameters can be used with Asia-based IP
addresses.

Table 830 can also store information about primary routes
to particular locations. For example, a considerable amount of
network traffic destined for South America passes through
servers in Florida and other primary gateway locations. The
attributes in table 830 can be biased to optimize TCP perfor-
mance based on conditions at these gateway servers. For
example, TCP timing parameters may be adjusted based on
traffic statistics and load along a primary route such that
transmit timing for South American connections is made
more or less aggressive. Many other location-specific adjust-
ments are possible within the scope of the present invention.
In some embodiments, cost and path information can also be
included. As an example, transit charges and other direct costs
of providing service can be tracked as well as indirect or
resource costs.

Table 840 provides information about the autonomous sys-
tems. Server 206 can determine an autonomous system (AS)
number for an end user computer based on the source address
of a content request. The AS number, in turn, can be used to
obtain additional information for modifying TCP parameters.
For example, if it is known that a particular AS is associated
with a type of network, the characteristics of the network
technology can be used to determine appropriate TCP param-
eters for a connection. Cable networks can have a relatively
high bandwidth and may be less prone to saturation than DSL
networks. Satellite connections, on the other hand, are typi-
cally associated with high latency. Server 206 can take advan-
tage of these characteristics by matching timing and pacing
parameters to the particular type of network.

25

30

35

40

45

50

55

60

65

20

When server 206 is collocated at an AS data center, link
statistics can be maintained and used to determine TCP
parameters. As a link nears full capacity, for example, it may
be inappropriate to increase the timing or send buffer size of
connections. In some embodiments, the preconfigured TCP
parameters are used when link utilization exceeds a predeter-
mined threshold. Thus, among other possibilities, the
attributes associated with AS information can indicate
whether or not TCP parameters should be modified and, if
modification is appropriate, which parameters are best suited
for known characteristics of the AS network.

FIG. 8C illustrates exemplary data corresponding to server
utilization. In some embodiments, each content distribution
server 206 has a limited amount of bandwidth and is intended
to support a certain network load. As the server approaches its
limits, it may be appropriate to scale back on resource allo-
cation to TCP connections. Conversely, when the server expe-
riences a light load, it may be appropriate to allocate more
system resources to improving the performance of TCP con-
nections. Table 850 provides information for judging load at
a content distribution server, including a bandwidth alloca-
tion (BW) measures and a connection rate (CPS).

By way of illustration, assume that a particular server 206
can support up to 2,000 connections per second and has
available bandwidth of 1 Gbps. When connection rates and
bandwidth usage are low, more resources are available for
modifying connections. In that case, it may be appropriate to
use more aggressive timing, larger buffers and other perfor-
mance enhancements. Thus, for example, connections to
server E1 may be modified by increasing the maximum send
buffer size to 300,000 bytes and biasing towards aggressive
timing and/or pacing utilization. On the other hand, server
E56 is nearing full capacity and may therefore bias new
connections to the preconfigured TCP parameters.

As will be readily appreciated, many different combina-
tions of factors can affect when and how a TCP connection is
modified. Different weights and precedence can be assigned
to the different types of information available from the data
store 220. For example, system resources may have the high-
est precedence, followed by service level, and then by meta-
data and AS factors, and finally by geographic considerations.
Across categories, different weights may be assigned 1o the
attributes so that a data source 750 can determine modified
TCP parameters based on the net effect of some or all of the
available information.

FIG. 9 shows exemplary performance profiles 900 such as
can be utilized to modify TCP parameters according to
embodiments of the present invention. Rather than determin-
ing parameters by combining individual factors, server 106
can include predetermined profiles for content requests. In the
example, profile P1 provides TCP settings for sending large
files to nearby (low-latency) users. As illustrated, a perfor-
mance increase can be realized by pacing such connections
and allowing the TCP send buffer to grow very large. Rela-
tively less aggressive timing adjustments are needed due to
the low latency factor. Profile P2, on the other hand, repre-
sents large file transfers to a latent user. In that case, pacing is
still used with the transfer, but more aggressive transmit tim-
ing may help to compensate for latency and an intermediate
send buffer may be appropriate. Profile P3 can be used to
transfer small files. With small files, it may be desirable to
disable pacing and transmit files in bursts. As a result, a large
send buffer may not be needed.

FIG. 10 shows an embodiment of a process 1000 for modi-
fying protocol attributes on a connection-by-connection or
request-by-request basis. Process 1000 canbe performed by a
data source 750 or by the caching function 208 of a content

US 7,715,324 B1

21

distribution server 206. At block 1010, a content request R1 is
received over an existing connection C1 at the server. The
request can include the URI of a content object. The content
object may be available in content cache 210, or from origin
server 240, or from some other server accessible through the
content delivery system.

The content request R1 can be conveyed through the lower
layers of protocol stack 700 to the appropriate data source 750
in the application layer 740. Since server 206 is capable of
modifying transport layer parameters on a connection-by-
connection and even a request-by-request basis, the present
process can be repeated for each new request (e.g., R2/C1)
and/or each new connection (e.g., R1/C2) as determined by
the data source 750 or caching function. Note also that that
server 206 need not be dedicated to serving a particular type
of content but can deliver files, images, video, or any other
content available through the content delivery system.

After the request for content is received, the responding
data source 750 determines whether the transport layer
parameters used with the connection and/or request should be
modified. Modifying the transport layer parameters is com-
pletely transparent to the end user; the end user is not required
to install software or monitoring applications to receive a
performance benefit.

At block 1015, the server 206 makes an initial determina-
tion as to whether system load exceeds a predetermined
threshold TH1. For example, the responding data source 750
can query the information in table 850 to determine current
bandwidth usage and system load. If the sysiem is experienc-
ing a heavy load, pre-configured TCP parameters may be
used. In that case, the process ends at block 1060. On the other
hand, if system load is below threshold TH1, a further deter-
mination is made as to link utilization. This can involve, for
example, accessing the information in table 840. If link uti-
lization exceeds a predetermined threshold TH2, then the
process can terminate at block 1060 and preconfigured TCP
parameters can be used with the connection/request.

When there is sufficient system resources and link capac-
ity, a determination can be made regarding the TCP param-
eters based on file size. The size of a requested file can be
determined by accessing the metadata of table 810. At block
1025, the file size is compared to a threshold value TH3 to
determine if itis a “large” file. If the file is not a Jarge file, then
at block 1030 it is compared to another threshold TH4 to
determine if itis a “small” file. If the requested file does not fit
in either category, then the preconfigured TCP settings may
be used. Otherwise, for small files, pacing can be disabled and
an appropriate send buffer size can be determined at block
1035. Thereatter, at block 1065, the responding data source or
cache application directs the TCP handler to modify the con-
nection for the small-file transfer.

With large files, it can be useful to make a further determi-
nation as to latency. At block 1045, a round trip time (RTT)
from the server to the end user computer is determined. This
can be done by sending ICMP messages to the end user’s
address and measuring the response time. If RTT is less than
a predetermined threshold THS, then the connection may be
characterized as low-latency. In that case, a relatively large
send buffer size and less aggressive TCP timing may be
appropriate. At block 1050, these settings are determined by
the data source or cache application either based on informa-
tion from individual items in data store 220 or by selecting a
performance profile. On the other hand, if RTT exceeds the
threshold, the connection may be characterized as high-la-
tency. At block 1055, parameters for the large-file, high-
latency transfer are determined. At block 1065, the data

25

30

40

45

55

22

source or cache function modifies the connection through the
TCP handler for the large file transfer.

FIG. 11 shows an additional embodiment of a process 1100
for modifying protocol attributes. Process 1100 can be per-
formed by a data source 750 or by the caching function of
content distribution server 206. The process begins at block
1110 when a request R1 is received from an end user com-
puter over connection C1. As previously noted, the process
can be repeated for each new request (e.g., R2/C1) and/or
each new connection (e.g., R1/C2) as determined by the data
source 750 or caching function.

At block 1115, the IP address of the client is determined
and the data source or cache function begins to gather infor-
mation for modifying the connection. Initially, a geographic
location and autonomous system of the end user computer are
determined based on the IP address (blocks 1120-1125). Ifthe
server has a dedicated link to the AS, link utilization is deter-
mined at block 1130 and compared to a predetermined thresh-
old TH2. When the link capacity is below the threshold, the
process terminates and the standard or pre-configured TCP
parameters are used for the connection/request. If link utili-
zation does not apply to the connection, orif link utilization is
below threshold TH2, the process continues.

In this embodiment, a predetermined profile is selected
based on the geographic location of the client and the type of
connection. For locations in the United States served by cable
access networks, blocks 1135-1140, a first geographic per-
formance profile G1 can be used. Relatively low latency may
be assumed for US locations and this profile can adjust TCP
timing to take advantage of the relatively high burst capability
of cable networks. For locations in the United States served
by digital subscriber line (DSL) networks, blocks 1145-1150,
a second geographic performance profile G2 can be used.
This profile may use slightly less aggressive timing with a
relatively large send buffer. Finally, for US locations served
by satellite networks, blocks 1155-1160, a third geographic
profile G3 can be used. This profile may assume high latency
but reliable delivery and therefore use relatively more aggres-
sive TCP timing and an intermediate send buffer size.

Customized profiles can be used for non-US locations or
when autonomous system information is not available as
shown by blocks 1165-1170. For example, a China-specific
profile or an Asia-specific profile can be developed based on
historical network performance measures. Similarly, where a
primary route to a particular destination is known, profiles
may be developed that are customized for the appropriate
connecting network elements. When the appropriate geo-
graphic performance profile has been selected, the data store
or cache function modifies the connection accordingly.

Throughout this document, the terms content delivery and
content download are used and can mean either file download
or streaming delivery. Additionally, a content object can be
either a file or a stream. For example, the content object could
be a voice call stream, a video stream, an image file, a music
file, a live concert, an animation, an advertisement, a web
page, a slide show, data file, hosted software, transactions,
executable software or the like. Content can be static or
dynamic, can pre-exist on the server, can be created on the
server, or can be created or obtained elsewhere in response to
a request from a client.

A number of variations and modifications of the disclosed
embodiments can also be used. For example, some of the
above embodiments discuss use of the TCP protocol or a
transport-layer protocol. Other protocols could be modified
on a connection-by-connection or request-by-request basis in
other embodiments. Also, connection parameters can be
modified based on additional information gathered from or

US 7,715,324 Bl

23

associated with content requests such as HTTP request head-
ers (e.g., content-length, cookies, content-type, user agent,
etc.), transport layer security (e.g., HTTPS), layer 2 address-
ing (e.g., the MAC address of the router from which the
request was received), port number, IP properties (e.g., TOS
—terms of service), hostname, and whether or not a request
successtully passed through a rewrite process.

While the principles of the disclosure have been described
above in connection with specific apparatuses and methods, it
is to be clearly understood that this description is made only
by way of example and not as limitation on the scope of the
disclosure.

What is claimed is:

1. A network connection method for delivering content, the
network connection method comprising:

receiving a first request for content from a network at a

server;

analyzing the first request for content to determine first

attributes, wherein analyzing the first request comprises
comparing a first uniform resource indicator (URI) with
an alphanumeric string to correlate the first URI with the
first attributes;

configuring a first connection for serving the content

between the server and a first node;

configuring a protocol of the first connection according to

the first attributes, wherein the protocol that is config-
ured is a transport layer protocol;

receiving a second request for content from the network at

the server;

analyzing the second request for content to determine sec-

ond attributes;

configuring a second connection for serving the content

between the server and a second node; and

configuring the protocol of the second connection accord-

ing to the second attributes, wherein the first attributes
affect operation of the protocol differently than the sec-
ond attributes affect operation of the protocol.

2. The network connection method for delivering content
as recited in claim 1, wherein the protocol is transmission
control protocol (TCP).

3. The network connection method for delivering content
as recited in claim 1, wherein the processes of analyzing the
first request and analyzing the second request are both per-
formed away from the server.

4. The network connection method for delivering content
as recited in claim 1, wherein the first connection and second
connection serve the content at least partially coextensive in
time.

5. The network connection method for delivering content
as recited in claim 1, wherein the content in the first-listed

w

10

15

20

25

30

35

40

45

24

analyzing limitation is different from the content in the sec-
ond-listed analyzing limitation.

6. A system for managing delivery of content over a net-
work, the system comprising:

protocol handler managing a first connection and a second

connection over the network using a protocol, wherein:

the protocol operates at an transport layer,

the protocol handler is configured to use first attributes
for the first connection, and

the protocol handler is configured to use second
attributes for the second connection;

a store holding a plurality of attributes; and

a protocol attribute selector, configured to:

receive first information relating to a first request for
content wherein the first information is derived from a
first uniform resource indicator (URT) associated with
the first request for content,

query the store for first attributes corresponding to the
first information,

program the protocol handler with the first attributes for
the first connection,

receive second information relating to a second request
for content,

query the store for second attributes corresponding to
the second information, and

program the protocol handler with the second attributes for

the second connection.

7. The system for managing delivery of content over the
network as recited in claim 6, wherein the protocol is trans-
mission control protocol (TCP).

8. The system for managing delivery of content over the
network as recited in claim 6, further comprising a protocol
stack that sends the content to a first node using the first
connection and a second node using the second connection.

9. The system for managing delivery of content over the
network as recited in claim 6, wherein:

the protocol handler is part of a server, and

at least one of the store and the protocol attribute selector
is located away from the server.

10. The system for managing delivery of content over the
network as recited in claim 6, wherein the first connection and
second connection serve the content at least partially coex-
tensive in time.

11. The system for managing delivery of content over the
network as recited in claim 6, wherein the content of the first
connection is different from the content in the second con-
nection.

Exhibit B

US008750155B2

a2z United States Patent 10) Patent No.: US 8,750,155 B2
Harvell et al. 5) Date of Patent: *Jun. 10, 2014
(54) CONDITIONAL PROTOCOL CONTROL (52) U.S.CL
CPC vvvverervcnvnceneacnene. HO4L 47/193 (2013.01)
(75) Inventors: Bradley B. Harvell, Chandler, AZ (US); USPC 370/252;370/389; 370/412; 370/466
Joseph D. DePalo, Peoria, AZ (US); (58) Field of Classification Search
Michael M. Gordon, Paradise Valley, CPC HO4AL 47/193; HO4L 69/326; GO6F 15/16
AZ (US); Jason L. Wolfe, Gilbert, AZ See application file for complete search history.
Us)
(56) References Cited
(73) Assignee: (I{}gl)elight Networks, Inc., Tempe, AZ U.S. PATENT DOCUMENTS
. 2002/0099844 Ai* 7/2002 Baumann etal. 709/232
(*) Notice: Subject to any disclaimer, theterm of this 5097/0067424 A1* 3/2007 Raciborski et al. 709/223
patent is extended or adjusted under 35 2008/0031149 Al* 2/2008 Hughesetal. 370/252
U.S.C. 154(b) by 169 days. 2008/0225721 Al* 9/2008 Plamondon 3707235
. 5 . . . 2010/0131671 Al* 52010 Kohlietal.c....... 709/233
This patent is subject to a terminal dis-))
claimer. * cited by examiner
(21) Appl No.: 13/595,904 Primary Examiner — JayY Lee
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
(22) Filed: Aug.27,2012 Stockton LLP
(65) Prior Publication Data B ABSTRACT
US 2013/0060893 A1 Mar. 7, 2013 1Techniques for. modifying the performance of a transport
ayer protocol in response to a request for content are dis-
closed. A connection can be established between a content
Related U.S. Application Data distribution server and an end user computer according to
preconfigured parameters. When a request for content is
(63) Continuation of application No. 12/572,981, filed on received over the connection, the content distribution server
Oct. 2, 2009, now Pat. No. 8,274,909, which is a can determine one or more parameters relating to the perfor-
continuation-in-part of application No. mance of the connection using information from the request.
PCT/US2009/038361, filed on Mar. 26, 2009. The content distribution server can modify the connection at
the transport layer according to the one or more parameters.
(51) Int.CL Thereatter, the transport layer can manage delivery of the
GOIR 31/08 (2006.01) requested content to the end user computer in accordance
GO6F 11/00 (2006.01) with the modified parameters. In various embodiments, the
GO8C 15/00 (2006.01) content distribution server includes a modified TCP protocol
H04J 1/16 (2006.01) stack which adjusts (iming, pacing, and buffer allocation
Ho04J 3/14 (2006.01) associated with a connection in response to reguests from an
HO4L 1/00 (2006.01) application-layer data source.
HO4L 1226 (2006.01)
HO4L 12/56 (2006.01) 20 Claims, 14 Drawing Sheets
/\/ 100
102 108:1
" Bnd User @
System(s)
1o 104
Content e
End User
g:ll\tl:g Giobal Internat System(e)

102-n *
2

End User End

"] System(s}

User{s)

LI
: g
o

) End User
Systemis}

104

2
2

Content
Delivery
System

A
End User
System(s}

Giobal internet

102-n ®

%

End User
Bystemis}

Jued 'S

¥10T ‘01 ‘unp

¥1J0 1139YS

7d SST°0SL‘8 SN

US 8,750,155 B2

Sheet 2 0of 14

Jun. 10, 2014

U.S. Patent

e U B VI IR U VY T VA N V) O VY VL 0 Y AV W 4 05 B W L 80 S5 Y S A A By A 05 B A A S 1,

ES

Y& Ol

;%

HROBS
Bq OGNy
JOO0Y0

&

mouen b
431

J{.%W\N

E-N

§ 90 00 90 0060 90 X 06 XK 90 B 90 M T O WD 81 T QX W A0 Kh 90 I D0 IX 00 G001 90 40 90 00 0 00 XK G0 1540 100 266 K09 307 105 £ D K0° 155 A 31 A VAL AR UL AN WAL AKX SR AR OO O
AT O3 A D5 N DX AN B2 D N AW D N N A O 00 TR 00 00 G0 3 WO O 00 2 60 O NP 40, 100 9B J00 00 300 90 KX 00 00 O 100 £0, W0 00 00 30 0N 00 100 OO WD 5 W AV AN AL R AR N0

.,
_— L
WO PLLGI (20D M _r P—
] 4
o mf
2031 i} :
n\«‘m td il (%78 Y
\& 847
%
o Wy KT SH e G s T R N G G G Y 7 G D BB U Y in op A ?ﬁs.»vv&\\»ssﬁ\vkvﬂsssssn&ss.sx‘»

502

US 8,750,155 B2

Sheet 3 of 14

00.% 00,00 T NC @5 0 30 10 N 0 A 0O OF 40 0 3K 2N 4C 20 50 20 1 01 06 9040 HE T LU 46,56 W K M AN AP DY

-

Jun. 10, 2014

U.S. Patent

907

2
PBIee m i
SHQUHY H oueny H
OO : T :
: d Hi : | B0 | m

3 g X 7
ar sBfpuBH :

”, . -

: R oz 3
4 ;
% i 4
m H H%& H
. ANV ; M sonsung :
4 B oL 290D ; % Bl M
: aen !
1 _ 3 ;
. ¢ 2 . 8
2 p 1 / sM,, m
: w

SS§*$388}RSSSSS§§$SS§§JS¥S§RBS&E‘&&&**S&

US 8,750,155 B2

Sheet 4 of 14

Jun. 10, 2014

U.S. Patent

L

3

v,

A

| OBUMOI
OURINS

QB0I0s |

jelvgl

SOWILD

WD S

}a&@

Ao

oud

BRI RS e

L

5 P K 0 T AR 5 e 2 T A1 A0 10 R KD YR AR, 4 1A i Y e O W3 LXK K 1 GO O Y Y > 0 Sl 9 s Ut Wt G,

JOBIeS
ZNGLNY
OO

E Y

00300 00 3K 3 30 8D 100 O M 80 4 WP N BX B W A O NV TN KN U K0 00 AR OO W G 0 OX KO OO 00 Gn DS 00 100 6 B¢ 00 08,

oA] sipusy 1%
ddl iy
Lotz

g

.,

LN
LB

A0 90 RS I8 T OB N0 00 N6 D0 N O X 00 HX 0 ¢ 00 00 00 <0 Fo

8'9.&gsggvv.k\xsss.uﬁ\kavssuﬁvkkscus\?MA

507

1

g0z

20 100 63 W0 S0 W I W Al B BN U0 VR AC TR B R R G K 00 200 00 XX 00 WK G0 KX 00 K WO OB W 90 WX 01 WE 00 0 Sb OF OB R 4B WE AL AR XA 0 KK OO AKX OB KX 0O KX 9D WX 90 20X OO R 00

2 Y T YRR R 08 5 W TE W D 009 B

206“1, 200-4
prenamenanonnsnohynanonm ey
H % : »/\/
R T 102
: : !
H 4
: cache g } Giobal Internet Jummmmwomdsd Clignt
' Furglion :
¢ Ed
8 214 H &
f ‘ 1 :
%
¥
¢ 219 TCP : ”is
: Handier i iy |
*
¢ 3
) 2 +
H ! Content H P’rofocloi
H o H Altribute
H | Cachg 3
' H Selector
: ;
] '

3
00 40 195 08 45 06 49 U 1K 40 05 90 OB 0 20E 64 08 0.0 300 01 L 46 05 40 1 1O 4L 4. 48 53 Y 1A 45 40 40 10 30 O 40 55 901

22¢

FiG. 20

Juased 'S

$10Z ‘01 "unp

P10 S 139YS

A SST0SL8 SN

U.S. Patent

Jun. 10,2014 Sheet 6 of 14
304

URI Raguested
from Server

i 308

Determine Any
Attribites for URI

i },5% 2
Modify TCP with
Attribuies

R

Dpliver Content from
Server o Client

Fig. 3

US 8,750,155 B2

U.S. Patent Jun. 10, 2014 Sheet 7 of 14 US 8,750,155 B2

R
P N e

LR Received
fram Node

URE Analyzed for
Comirgl Information

Table Queried for
Attribute{s}

l 428
J

Attribute{s) Commurnicaisd o
TOP Handise

{

Caommsction Estatiished
Ancording © Any Attribules

l {m‘éﬁ:{%

Distiver Content Ohjact
Through Connection

I
23
Fan)

7

Fig. 4

U.S. Patent Jun. 10, 2014 Sheet 8 of 14 US 8,750,155 B2

Slobal internet

U.S. Patent

Jun. 10, 2014 Sheet 9 of 14

US 8,750,155 B2

P T e
& H r}
. 220 -2
- -
Rlemory
uata siors
§
>
e
Proavassay
&
e

Nebwork intarfaces

e
a3
i3

FIG. 6

3
5
ot

oo R4

U.S. Patent

Jun. 10, 2014

Sheet 10 of 14

US 8,750,155 B2

Data

J

3
o
<z

-

Daia

{ata

b xeagroe 4 - uoirne 2 wes - souree N P TAG
T § T z /H:”f ARE
§ ﬁ} o
R T30
PO NG FOR hariiar IR
o TG
54 o

PHYIDATA

oo TG

FIG. 7

U.S. Patent

Jun. 10, 2014

Sheet 11 of 14

US 8,750,155 B2

Fila nams Frovider Fie SQize Type - Atribs
g gif ABQ &K irnage sew aitrl=ne
inglex.himd ABC 00K taxt pxe
SPOYIRLIIPG ABC 1GR video e

Frovider Service Levad wue Attribs
ARG Prasvium aex aiinde QOO{E
L}E}: AR

i Address § Frafy AZ# Cauntry ox Aliribs -
1230180840 7/84 12344 Us xea aftr3=2 8
34070010784 34567 s wan
166,224 886.078 LINK ASIA enx

AR Location Service Type xoo
12348 Tempe, AZ 8L 43% xxe
Chisago, Caalde 229 T

34587 Atlania, GA JAKT - cex

FiG.

U.S. Patent

Jun. 10, 2014

Sheet 12 of 14

US 8,750,155 B2

o D80

H

v

agmf.aﬁi‘:\e sy SN PN A itriine -
WEIVE A RS xxe AMENNE
&1 TRE 205 wxo At ds FOOGHY, ad
&5 Q
38 337 1877 won Srd=300000, strosgioy
FIG. 8C
800
H

Pacing

Savud

T
Window

Camrnent

#1 25 1 ML @, NBRF USSY
R A1 R g
P2 4 175000 fargn fg, tent user

amiall e

U.S. Patent Jun. 10, 2014 Sheet 13 of 14 US 8,750,155 B2

Revedve request)1 j &
.

on sarawotion O

AN
Vis
-»"“’".-:13 firtht TP
. N ,{N TG

alifization
THRY

el
3
n

File size »
TH3?

10408 e H
\1‘ Dizabds
TOR paoing

AN o
detarming s
Eaaffemy sizs

TO8G \1

Datoenmi
with

astac St s Fene
iarge buffe
$ aggressive

TER $ming

H

Detorrin medium hulferd

With more agoressive
TER timing

RS

¥

_:Gﬂ:f‘éa‘y TOF params b

FiG. 10

U.S. Patent Jun. 10, 2014 Sheet 14 of 14 US 8,750,155 B2

{A 108
=
‘L 1120
Datarming geography f
¥ 1128
Doafermire AS .-»r
¥ 1130
/’?s Link
utfiization >
TH2?
138 jp 1140
& TITY - D R -
Gy by US 8& iy A
s . . s > 3 MMroie=et T—
~Sornmation is Oabf T
1148 b -~ 180
‘ 4
Geo s US && e
o ; Proffe=(2]
Lonnection s DSL2 ‘
11588 M} {, 1180
Geo b UsS && et o K
. . ~ MHe=!
Cemrsotion s SATZ A i
1188 o 1170
Tane 18 Gther .
Connection s UNK Profifesusion R
L& Have Info?,
1184 ~
. W, A

3

G params
ed on profle
W

revrT

FiG. 11

US 8,750,155 B2

1
CONDITIONAL PROTOCOL CONTROL

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/572,981, filed Oct. 2, 2009 which is a con-
tinuation-in-part claiming priority benefit under 35 U.S.C.
§365(c) of International Patent Application Serial No. PCT/
US2009/038361, filed Mar. 26, 2009. Each of the above-
listed applications is hereby incorporated by reference in its
entirety for all purposes.

BACKGROUND

This disclosure relates in general to interoperating nodes in
an information processing system, such as an Internet content
delivery system or an Internet transaction acceleration sys-
tem, and, but not by way of limitation, to control of connec-
tion protocols.

In an information processing system, including communi-
cations networks such as the Internet, two or more nodes can
work together, for example exchanging information or shar-
ing resources, using one or more protocols that enable the
participating nodes to interoperate. Nodes need not be physi-
cally distinct from one another, though they may be; nor-
mally, however, nodes are at least logically distinct from one
another in at least some respect. Interoperating nodes may be
operated or managed by a single common authority or by
independent, unrelated authorities. Two or more interoperat-
ing nodes are often independently operated or managed; the
Internet includes many well known examples of the interop-
eration of two or more independently managed nodes.

A protocol can be standardized such that a node using the
standard protocol should be able to interoperate, at least at the
level of the protocol, with any other node using the standard
protocol. Standard protocols that become widely adopted can
permit a node to interoperate with many other nodes. One
such widely adopted standard protocol on the Internet is the
Transmission Control Protocol (TCP), which today enables
almost every device on the Internet to interoperate with
almost every other device. TCP operates at the connection
layer and enables nodes to interoperate with other nodes by
establishing communications connections.

Standard protocols often employ the use of attributes, such
as configurable parameters and selectable algorithms, to per-
mit the protocol to operate effectively in various situations.
For example, TCP controls message size, the rate at which
messages are exchanged, and factors related to network con-
gestion through the use of attributes, including both by the use
of parameters, such as the receive window field used in slid-
ing window flow control and the retransmission timer, and by
the use of algorithms, such as slow-start, congestion avoid-
ance, fast retransmit, and fast recovery algorithms. It is often
the case, in many standard protocols, that at each node the
initial protocol attribute settings to be used for all the com-
munication connections at the node can be independently
specified by the operator of the node.

A protocol can also be customized, which in general
requires that each node have installed customized compo-
nents to enable the custom protocol. Without the customized
components, the node would not be able 1o fully interoperate
with other nodes using the customized protocol. Although it
therefore may limit the total number of interoperable nodes,
or in the alternative require widespread action to install the
protocol customized components, or possibly both, protocol
customization is used in order to add function, improve per-

15

25

30

35

40

45

50

55

60

65

2

formance, increase flexibility, or modify other characteristics
of a standard protocol, or to make available an entirely new
customized protocol. Many customized protocols have been
proposed for use on the Internet.

_SUMMARY

Techniques for modifying the performance of a transport
layer protocol in response to a request for content are dis-
closed. A connection can be established between a content
distribution server and an end user computer according to
preconfigured parameters. When a request for content is
received over the connection, the content distribution server
can determine one or more parameters relating to the perfor-
mance of the connection using information from the request.
The content distribution server can modify the connection at
the transport layer according to the one or more parameters.
Thereafter, the transport layer can manage delivery of the
requested content to the end user computer in accordance
with the modified parameters. In various embodiments, the
content distribution server includes a modified TCP protocol
stack which adjusts timing, pacing, and buffer allocation
associated with a connection in response to requests from an
application-layer data source.

In one embodiment, a method for managing delivery of
content in a system comprising a server and an end user
computer is disclosed. The method includes establishing a
first connection at the server for communicating with the end
user computer and receiving a request for content from the
end user computer over the first connection. The method also
includes determining one or more parameters relating to the
performance of the first connection using information from
the request and modifying the first connection at the transport
layer based on the one or more parameters. Modifying the
first connection can be done without notifying the end user
computer. The method also includes sending the requested
content from the server to the end user computer such that the
transport layer manages delivery of the content in accordance
with the modified parameters.

Optionally, the method includes retrieving metadata asso-
ciated with a requested file and modifying the first connection
based on the metadata. Altematively or additionally, the
method can include selecting a predetermined performance
profile for the first connection using the information from the
request and modifying the first connection based on the pre-
determined performance profile. The method can include
determining a connection type of the end user computer and
a latency characteristic associated with the connection type
and modifying the first connection at the transport layer based
on the latency characteristic. The method can also include
determining a data size of the requested content, measuring a
round trip time between the server and the end user computer
when the data size exceeds a predetermined value, and modi-
fying the first connection at the transport layer based on the
size of the requested content and the round trip time.

In another embodiment, a content distribution server is
disclosed. The server includes a network interface, a proces-
sor, a protocol handler, and a data source. The network inter-
face includes a plurality of ports for sending and receiving
data over a connecting network. The processor is coupled to
the network interface and manages a plurality of connections
to end user computers. The protocol handler establishes the
connections with the end user computers according to pre-
configured transport layer parameters of the content distribu-
tion server and manages the manner in which data is trans-
mitted over the connections. The data source supplies the
requested content. The data source monitors a first connection

US 8,750,155 B2

3

for arequest, determines one or more modified transport layer
parameters based on the request, and directs the protocol
handler to modify the first connection independently of the
other connections based on the one or more transport layer
parameters.

In still another embodiment, a content distribution serveris
disclosed. The server includes means for sending and receiv-
ing data over a connecting network, means for managing a
plurality of connections to end user computers, and means for
establishing a connection with each end user computer
according to preconfigured transport layer parameters. The
server includes means for managing data transmission over
the plurality of connectjons, means for modifying a connec-
tion based on one or more transport layer performance param-
eters, and means for supplying requested content to the end
user computers over the plurality of connections. The server
also includes means for monitoring a first connection for a
content request, means for determining the one or more trans-
port layer performance parameters for the first connection
based on the request, and means for sending the requested
content over the first connection modified by the one or more
transport layer performance parameters.

In yet another embodiment, a computer program product
comprising a computer-readable medium is disclosed. The
computer-readable medium is encoded with one or more
sequences of one or more instructions which, when executed
by a processor, perform steps of establishing a first connec-
tion at the server for communicating with an end user com-
puter and receiving a request for content from the end user
computer over the first connection. The instructions operate
to determine one or more parameters relating to the perfor-
mance of the first connection based on information from the
request and to modify the first connection at the transport
layer using the one or more parameters without notifying the
end user computer. Additionally, the instructions operate to
send the requested content from the server to the end user
computer such that the transport layer manages delivery of
the content in accordance with the modified parameters.

Further areas of applicability of the present disclosure will
become apparent from the detailed description provided here-
inafter. It should be understood that the detailed description
and specific examples, while indicating various embodi-
ments, are intended for purposes of illustration only and are
not intended to necessarily limit the scope of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram of an embodiment of a
content delivery system.

FIGS. 2A, 2B, 2C, and 2D depict block diagrams of
embodiments of a content download pair that sends content
from a server to a client.

FIG. 3 illustrates a flowchart of an embodiment of a process
for modification of the TCP protocol for various connections
to a server.

FIG. 4illustrates a flowchart of an embodiment of a process
for modifying protocol attributes potentially on a connection-
by-connection basis.

FIG. 5 shows aspects of a content delivery system.

FIG. 6 is a block diagram of an embodiment of a content
distribution server.

FIG. 7 shows an exemplary content distribution server
protocol stack.

FIGS. 8A, 8B, and 8C show exemplary data elements such
as can be used with a content distribution server.

FIG. 9 shows exemplary performance profiles such as can
be used with a content distribution server.

25

30

40

45

50

55

60

65

4

FIG. 10 is a flowchart of a process for modifying transport
layer protocol attributes.

FIG. 11 is a flowchart of process for modifying transport
layer protocol attributes.

In the figures, similar components and/or features may
have the same reference label. Further, various components of
the same type may be distinguished by following the refer-
ence label by a dash and a second label that distinguishes
among the similar components. If only the first reference
label is used in the specification, the description is applicable
to any one of the similar components having the same first
reference label irrespective of the second reference label.

DETAILED DESCRIPTION OF EMBODIMENTS

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the disclosure. Rather,
the ensuing description of the preferred exemplary embodi-
ment(s) will provide those skilled in the art with an enabling
description for implementing a preferred exemplary embodi-
ment. I being understood that various changes may be made
in the function and arrangement of elements without depart-
ing from the spirit and scope as set forth in the appended
claims.

Referring first to FIG. 1, a block diagram of an embodiment
of an Internet content delivery system 100 is shown. Gener-
ally, one or more nodes request content from one or more
other nodes. In FIG. 1, a number of end users 108 respectively
use their end user system or client 102 to download and view
content objects from the global Intemet 104. The content
delivery system 110 has one or more servers that provide
content object downloads. The content delivery system 110
can include any number of cache servers, application servers,
content servers, service servers, and/or database servers to
provide content to the clients 102. Although this embodiment
shows particular communication pairs, other embodiments
could communicate between any pair of nodes on a network,
including between pairs of clients or between pairs of servers,
and yet other embodiments could communicate among more
than two nodes, such as in a broadcast or multicast implemen-
tation.

With reference to FIGS. 24, 2B, 2C and 2D, embodiments
of a content download pair 200 that sends content from a
server 206 to a client 102 are shown. A primary embodiment
described here is the interoperation of two nodes 102, 206 on
the Internet communicating using TCP, one node being a
client 102 that requests information, such as web page con-
tent, multimedia, or software downloads, and the second node
being a server 206 that provides information in response to a
request. TCP operates in the transport layer of the seven-layer
Open Systems Interconnection (OSI) model. In other
embodiments, nodes 102,206 interoperate in ways other than
communication in a network, such as sharing data within a
computer or group of computers across an available system or
intersystem interface; interoperate using communications
networks other than the Internet 104, such as a private com-
munications network; interoperate using the Internet 104 or a
private network using protocols other than TCP, such as UDP,
RTP, multicast protocols, and other standard protocols in the
transport layer; interoperate using the Internet 104 or a private
network using standard protocols operating in a layer that
underlies the transport layer; interoperate, using standard
protocols and the Internet or a private network, more than two
at a time, such as in clusters or multicast groups; or interop-
erate, using standard protocols and the Internet or a private
network, other than as a client and server, including interop-

US 8,750,155 B2

5

erating as peers, as collaborative nodes, or as a group of nodes
under the common control of one or more other nodes or
under the common control of a controller.

In the primary embodiment, the server 206 conditionally
adapts the attributes of the TCP protocol for each TCP con-
nection established by a client 102. Conditionally adapting
the attributes of the TCP protocol does not require changes to
standard TCP protocol implementations at every node, does
not require special components be installed in the TCP pro-
tocol implementation at every node, and therefore does not
comprise implementing a customized protocol as previously
described; rather, the primary embodiment utilizes the stan-
dard TCP protocol and the attributes implemented in it. In
other embodiments, the server conditionally adapts the
attributes of other transport-layer protocols for each session
established by a client 102; the server conditionally adapts the
attributes of other protocols that underlie the transport layer
for each session established by a client 102; the server 206
conditionally adapts the atiributes of the TCP protocol or
other protocol for groups of connections or sessions estab-
lished by clients 102; the server 206 conditionally adapts the
attributes of the TCP protocol or other protocol for connec-
tions or sessions established by groups or subsets of groups of
clients 102; the client 102 conditionally adapts the attributes
of the TCP protocol for each TCP connection established; the
client 102 conditionally adapts the attributes of other proto-
cols for each session established; the client 102 conditionally
adapts the attributes of the TCP protocol or other protocol for
groups of connections or sessions; a node conditionally
adapts the attributes of the TCP protocol or other protocol for
each connection or session; a node conditionally adapts the
attributes of the TCP protocol or other protocol for groups of
connections or sessions; a node conditionally adapts the
attributes of the TCP protocol or other protocol for connec-
tions or sessions established by groups or subsets of groups of
nodes; a controller conditionally adapts the attributes of the
TCP protocol or other protocol for each connection or session
of at least one node of an interoperating group of nodes; a
controller conditionally adapts the attributes of the TCP pro-
tocol or other protocol for groups of connections or sessions
of at least some nodes of an interoperating group of nodes; or,
a controller conditionally adapts the attributes of the TCP
protocol or other protocol for connections or sessions estab-
lished by groups or subsets of groups of nodes.

Software, software modifications, or equivalent function,
may optionally be implemented at a server, client, or node that
sets the conditionally adapted protocol attributes of a connec-
tion or session, but need not be implemented at servers, cli-
ents, or nodes that passively participate in a conditionally
adapted protocol connection or session. Such software, soft-
ware modifications, or equivalent function will only be
needed if existing protocol software or other software on the
server, client, or node does not provide a facility for program-
matically or similarly changing attributes of the protocol that
is used; in this event, software, a software modification, or
equivalent facilities to provide such a programmatic or simi-
lar interface may be implemented.

Conditjonally adapting the protocol for each connection or
session, or collection of connections or sessions, results in at
least one node that, concurrently or over time, uses a protocol
for multiple unrelated connections or sessions wherein the
protocol attributes vary, at least initially and sometimes per-
sistently, from one connection or session to another, most
often varying differently from any ordinary protocol attribute
variations that naturally occur from one connection or session
to another through use of the standard protocol implementa-
tion among heterogeneous nodes.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the primary embodiment, TCP connections are estab-
lished in order to use HyperText Transfer Protocol (HTTP) to
communicate information requests from clieats 102 to serv-
ers 206 and responses from servers 206 to clients 102. HTTP
is a scheme that operates above, and depends on the presence
of a functioning and reliable protocol at, the transport layer of
the seven-layer model developed in the Open Systenis Inter-
connection (OSI) initiative. Other embodiments use applica-
tion-layer protocols other than HTTP in conjunction with
TCP; use TCP alone, i.e., without HTTP; use other protocols;
or, use other application-layer protocols in conjunction with
other protocols. HTTP utilizes Uniform Resource Locators
(URLs), Uniform Resource Names (URNSs), and Uniform
Resource Identifiers (URIs) to identify information. URLs
are used in the primary embodiment. Other embodiments use
URIs, URNS, other identifiers, or other information. A URL
begins with the scheme identifier, which identifies the
namespace, purpose, and syntax of the remainder of the URL.
In the primary embodiment utilizing HTTP, the typical
scheme is “http”. The scheme is followed by a host field,
which contains the IP address or name of the host where the
requested information can be found, optionally followed by a
port number, optionally followed by a path, which is an HTTP
selector, optionally followed by a search portion, which is a
query string. The full URL, then, is an alphanumeric string
containing the scheme, host field, any optional following
strings, and special characters such as “:”, “/”, and “?” that are
reserved for special functions such as designating a hierar-
chical structure in the URL. Other embodiments could use
different application-layer protocols such as Telnet, File
Transfer Protocol (FTP), secure HTTP (HTTPS), and Simple
Mail Transfer Protocol (SMTP).

In the primary embodiment, the server 206 bases the con-
ditional adaptation of the attributes of the TCP protocol onthe
alphanumeric URL string provided by the client 102 in its
information request. In another embodiment, a server, client
or other node bases the conditional adaptation of the attributes
of the TCP protocol or other protocol on the application-layer
protocol specified or on identifying information, equivalent
to a URL, or other information provided in, or characteristic
of, an information request, connection, or session. In other
embodiments, a server, client or other node bases the condi-
tional adaptation of the attributes of the TCP protocol or other
protocol on the IP address of one or more servers, clients, or
nodes; on network information associated with the IP address
of one or more servers, clients, or nodes, including the
Autonomous System (AS) number, identity of network
operator, geographic location, logical or physical network
location, logical or physical network segment, or
network interconnection characteristics associated with the
IP address(es) of one or more servers, clients, or nodes; the
geographic location of the server, client or node; and/or, the
logical or physical network location of the server, client or
node; the logical or physical address of the server, client or
node; the logical or physical name of the server, client or
node; and/or, the network or other path from or to a server,
client or node. In other embodiments a server, client or node
bases the conditional adaptation of the attributes of the TCP
protocol or other protocol on recent network performance
measurements, including latency, jitter, packet loss, round
trip time, and/or the measured variance in a network perfor-
mance measurement across multiple samples; on recent mea-
sures of utilization of a network, network segment, network
interface, or network port; and/or, on recent measurements of
performance or utilization of a server, group of servers, or
server component(s) such as memory, processor, disk, bus,
intersystem interface, and/or network interface. In still other

US 8,750,155 B2

7

embodiments, a server, client or node bases the conditional
adaptation of the attributes of the TCP protocol or other
protocol on temporal factors, including time of day; day of
week, month, or year; specific date; occurrence of a holiday or
religious observance; occurrence of a temporal event such as
a news event or sports event; seasonal occurrence; and/or a
scheduled event or time period.

In the primary embodiment, the protocol attribute selector
212 of the server 206 compares the alphanumeric URL string
provided by the client 102 in its information request to a table
220 containing partial or whole URLs and identifies the most
specific match from left to right that it can find in the table
220. In another embodiment, the server 206 compares a sub-
set of the alphanumeric string, for example some or all of the
characters in the query string, or the characters following the
host field up to the first subsequent slash (i.e., /), to a table
2290. In another embodiment, the client or node 102 makes a
conditional adaptation of protocol attributes, using the alpha-
numeric URL string or a subset of it. In other embodiments,
the alphanumeric URL string or a subset of it is processed to
obtain a value or indicator that is used to determine a condi-
tional adaptation of protocol attributes. In other embodi-
ments, the information used to determine the conditional
adaptation of protocol attributes is identifying information
equivalent to a URL, one or more IP addresses, network
information associated with one or more IP addresses, net-
work interconnection characteristics associated with one or
more IP addresses, or the geographic location, or logical or
physical network location, of a server, client or node. In other
embodiments, the information used to determine the condi-
tional adaptation of protocol attributes comprises one or more
recent performance measurements or thresholds related to
one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or related to one or more networks, network
segments, network components, or network interfaces, or
groups of network segments, network components, or net-
work interfaces; rates or amounts of variation in one or more
performance measurements or thresholds related to one or
more servers, clients, or nodes, or groups of servers, clients,
or nodes, or related to one or more networks, network seg-
ments, network components, or network interfaces, or groups
of network segments, network components or network inter-
faces; rates or amounts of resource utilization, including uti-
lization related to one or more servers, clients, or nodes, or
groups of servers, clients, or nodes, or components of one or
more servers, clients, or nodes, groups of components of
servers, clients, or nodes, or related to one or more networks,
network segments, network components, or network inter-
faces, or groups of network segments, network components,
or network interfaces; rates or amounts of variation in
resource utilization, including variation in utilization related
to one or more servers, clients, or nodes, or groups of servers,
clients, or nodes, or components of one or more servers,
clients, or nodes, groups of components of servers, clients, or
nodes, or related to one or more networks, network segments,
network components, or network interfaces, or groups of
network segments, network components, or network inter-
faces; and/or, thresholds of resource utilization, including
utilization related to one or more servers, clients, or nodes, or
groups of servers, clients, or nodes, or components of one or
more servers, clients, or nodes, groups of components of
servers, clients, or nodes, or related 1o one or more networks,
network segments, network components, or network inter-
faces, or groups of network segments, network components,
or network interfaces.

In the primary embodiment, a table 220 containing partial
or whole URLs for comparison by the protocol attribute

0

—_

—_

5

25

40

45

55

60

65

8

selector 212 is stored on the server 206. In other embodi-
ments, a table 220 containing partial or whole URLs for
comparison, or subsets of the alphanumeric URL string used
for comparison, is stored remotely from the server 206 such
as the embodiment shown in FIG. 2B and the comparison of
the alphanumeric URL string or subset of the alphanumeric
URL string is made at the server 206, or is made at the remote
table storage location or at another location and the result of
the comparison, or an indicator of the result of the compari-
son, or the protocol attributes to be used, are returned to the
server 206. In other embodiments, a table 220 or database of
information used for comparison is stored at the server 206, or
is stored remotely from the server 206 and one or more
comparisons are made at the server 206, or are made at the
remote storage location or at another location, and the results
of the comparisons, or one or more indicators of the results of
the comparisons, or the protocol attributes to be used, are
returned to the server 206. In yet other embodiments, a table
220 containing partial or whole URLs for comparison, or
subsets of the alphanumeric URL string used for comparison,
or a database of information used for comparison is stored at
a client or node 102 as is shown in FIG. 2D, or is stored
remotely from a client or node and one or more comparisons
are made at the client or node 102, or are made at the remote
storage location or at another location and the results of the
comparisons, or one or more indicators of the results of the
comparisons, or the protocol attributes to be used, are
returned to the client or node 102. In other embodiments, a
protocol attribute to be used, or an indicator of a protocol
attribute to be used, is extracted from, or derived from, a URL
orequivalent identifying information used by a server, client,
or node; is extracted from, or derived from, address informa-
tion or a whole or partial name of a server, client, or node; is
extracted from, or derived from a user name or identifier, class
or type of user, group of users, or selection of users, optionally
as associated with a service, server, client, or node; is
extracted from, derived from, or associated with, an applica-
tion or class or group of applications, a service or class or
group of services, or a database or equivalent source of data or
a class or group of databases or sources of data; is extracted
from, or derived from, the identifier of a standard protocol, a
standard protocol message (for example, a TCP SYN), the
protocol-level content of a message, or protocol message
headers or equivalent information; is derived from all or a part
of the time, all or a part of the date, or all or a part of the
duration since a time or date; is determined according to a
sequence or progression; and/or, is determined randomly or
pseudo-randomly.

After one or more comparisons are made, or after the
extraction or derivation of a value, or after an association or
determination is made, the server, client, or node will have
one or more values it can use as protocol attributes or as
indicators of which protocol attributes to use; or, if there has
not been a determination of a condition resulting in one or
more protocol attribute values to use, then in the primary
embodiment the server 206 will use the standard values for
the protocol attributes as configured for the server 206, and in
other embodiments, the server, client, or node will use the
standard values as configured for it for some or all of the
protocol attributes; the server, client, or node will use another
default value for some or all of the attributes; the server,
client, or node will use the last-used values for some or all of
the attributes; or, the server, client, or node will use randomly,
pseudo-randomly, or arbitrarily determined values for some
or all of the attributes.

In the primary embodiment, the server 206 is a cache
server, typically operating in a group of cache servers, and

US 8,750,155 B2

9

groups of cache servers are distributed at numerous points on
the global Internet. The server 206 includes a cache function
208 coupled to a content cache 210 to provide caching of
content for the server 206. In another embodiment, the server
206 is a cache server operating individually, or independently
_from other cache servers. In other embodiments, the server
206 is a content server that provides content; a content server
operating in a group of content servers; a content server
operating in a group of content servers distributed at numer-
ous points on the global Internet; an application server that
supports one or more applications; an application server oper-
ating in a group of application servers; an application server
operating in a group of application servers distributed at
numerous points on the global Internet; a service server that
provides one or more services; a service server operating in a
group of service servers; a service server operating in a group
of service servers distributed at numerous points on the global
Internet; a database server that provides data; a database
server operating in a group of database servers; a database
server operating in a group of database servers distributed at
numerous points on the global Internet; a server operating in
a heterogeneous group of servers; or, a server operating in a
heterogeneous group of servers distributed at numerous
points on the global Internet.

In the primary embodiment, each server 206 has an iden-
tical copy of a table 220 containing partial or whole URLs to
which the alphanumeric URL string provided by the client
102 in its information request will be matched if possible,
along with an indicator of the protocol attribute values to be
used when that match occurs or the actual protocol attribute
values themselves to be used when that match occurs. The
table 220 can be modified from time to time, including adding
new entries, changing the contents of existing entries, and
deleting entries. Any time that a new version of the table 220
is created, copies of that version are distributed to servers 206
in the global group of cache servers. Optionally, the table 220
can have an expiration date and time, after which the server
206 will stop using the table 220 ifit is out-of-date and has not
been replaced with an updated table. In the primary embodi-
ment, the conditional protocol control information is com-
bined with other information distributed to servers 206 so as
o minimize to the extent practicable the number of tables 220
that are distributed to, and synchronized among, the global
group of servers; in another embodiment, this combination
and minimization is not implemented; and this combination
and minimization is not done in most or all other embodi-
ments.

In other embodiments, the conditional protocol informa-
tion may be in the form of a table 220 as in the primary
embodiment, or may be in the form of multiple tables, or may
be in the form of one or more data files, one or more databases,
one or more calculated or derived elements, one or more
calculated or derived groups of elements, one or more indi-
vidual equations or formulas, one or more groups of equa-
tions or formulas, one or more individual expressions, one or
more groups of expressions, one or more individual programs
or routines, one or more groups of programs or routines, one
or more individual listings, one or more groups of listings,
and/or other forms equivalent to any of these.

In other embodiments, the conditional protocol control
information contains partial or whole URLs to which the
alphanumeric URL string provided by the client 102 in its
information request will be matched if possible, along with an
indicator of the protocol attribute values to be used when that
match occurs or the actual protocol attribute values them-
selves to be used when that match occurs, and is the same for
each server 206 at a location, but varies from one location to

|8
(=

35

40

45

10

another; is the same for each server in a region, but varies
from one region to another; or, is different at each server. In
other embodiments the conditional protocol control informa-
tion contains partial or whole URLs to which the alphanu-
meric URL string used by a client or node 102 will be
matched if possible, along with an indicator of the protocol
attribute values to be used when that match occurs or the
actual protocol attribute values themselves to be used when
that match occurs, and the conditional protocol control infor-
mation is identical at each client or node 102; is the same for
each client or node 102 in a group, but varies from one group
of clients or nodes 102 to another; is the same for each client
ornode 102 in a region, but varies from one region to another;
or, varies from one client or node 102 to another client or node
102.

In other embodiments, the conditional protocol control
information contains other comparison information that will
be matched, if possible, along with a corresponding indicator
of the protocol attribute values to be used when that match
occurs or the corresponding actual protocol attribute values
themselves to be used when that match occurs, and each
server, client, or node has an identical copy of the conditional
protocol control information; the conditional protocol control
information is the same for each server, client, or node at a
location, but varies from one location to another; the condi-
tional protocol control information is the same for each
server, client, or node in a region, but varies from one region
to another; the conditional protocol control information is the
same for each server, client, or node in a group, but varies
from one group to another; or, the conditional protocol con-
trol information varies from one server, client, or node to
another. In these embodiments, the comparison information
can include subsets of the alphanumeric URL string; identi-
fying information equivalent to a URL; one or more IP
addresses; network information associated with one or more
IP addresses; network interconnection characteristics associ-
ated with one or more IP addresses; the geographic location,
or logical or physical network location, of a server, client, or
node; a value of a performance measurement or threshold; a
rate or amount of variation in a performance measurement or
threshold; a rate or amount of resource utilization; a rate or
amount of variation in resource utilization; a threshold of
resource utilization; addresses, names, classes, types, or
group identifiers of servers, clients, nodes. users, applica-
tions, services, databases, or other data sources; protocol
identifiers, protocol message identifiers or attributes, or pro-
tocol message headers or attributes; times, dates, or intervals;
and/or, sequences, ratios, progressions, equations, randomly
generated data, or arbitrarily determined data.

In embodiments where the conditional protocol control
information is not identical at all servers, clients, or nodes,
optionally a system can create conditional protocol control
information for each location, region, server, client, or node,
and optionally can manage the distribution of the conditional
protocol control information to each location, region, server,
client, or node. For partial or whole URLSs, subsets of a URL
alphanumeric string, or other comparison information that
will be compared, a conditional protocol information man-
agement and distribution system (CPIMDS) optionally gen-
erates, or stores, or generates and stores, protocol attributes
for any or all of a server, all servers, a subset of servers, a
location, all locations, a subset of locations, a region, all
regions, a subset of regions, a group, all groups, a subset of
groups, an application, all applications, a subset of applica-
tions, a service, all services, a subset of services, a database or
data source, all databases or data sources, a subset of data-
bases or data sources, a protocol, all protocols, a subset of

US 8,750,155 B2

11

protocols, a client, all clients, a subset of clients, a node, all
nodes, a subset of nodes, or a combination of some, a subset
of, a subset of some of, or all of, servers, locations, regions,
groups, applications, services, databases or data sources, pro-
tocols, clients, or nodes; and optionally generates, or stores,
or generates and stores, default protocol attributes to be used
in the absence of a matching comparison for any or all of a
server, all servers, a subset of servers, a location, all locations,
a subset of locations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, an application, all
applications, a subset of applications, a service, all services, a
subset of services, a database or data source, all databases or
data sources, a subset of databases or data sources, a protocol,
all protocols, a subset of protocols, a client, all clients, a
subset of clients, a node, all nodes, a subset of nodes, or a
combination of some, a subset of, a subset of some of, or all
of, servers, locations, regions, groups, applications, services,
databases or data sources, protocols, clients, or nodes. The
CPIMDS also optionally generates, or stores, or generates
and stores, one or more rules for determining which of the
server, location, region, group, application, service, database
or data source, protocol, client, node, or combined values to
use when determining a comparison to be included in the
conditional protocol control information for a server, all serv-
ers, a subset of servers, a location, all locations, a subset of
locations, aregion, all regions, a subset of regions, a group, all
groups, a subset of groups, an application, all applications, a
subset of applications, a service, all services, a subset of
services, a database or data source, all databases or data
sources, a subset of databases or data sources, a protocol, all
protocols, a subset of protocols, a client, all clients, a subset of
clients, a node, all nodes, a subset of nodes, or a combination
of some, a subset of, a subset of some of, or all of, servers,
locations, regions, groups, applications, services, databases
or data sources, protocols, clients, or nodes; optionally gen-
erates, or stores, or generates and stores, one or more rules for
determining when to create, or distribute, or create and dis-
tribute, conditional protocol control information for or to a
server, all servers, a subset of servers, a location, all locations,
asubset of locations, a region, all regions, a subset of regions,
a group, all groups, a subset of groups, a client, all clients, a
subset of clients, a node, all nodes, a subset of nodes, or a
combination of some or all of servers, locations, regions,
groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes; optionally generates, or stores, or generates and
stores, one or more rules for determining whether, and if so
when, any conditional protocol control information shall
expire; optionally includes an expiration value with some or
all of the conditional protocol control information; and,
optionally distributes conditional protocol control informa-
tion to a server, all servers, a subset of servers, a location, all
locations, a subset of locations, a region, all regions, a subset
of regions, a group, all groups, a subset of groups, a client, all
clients, a subset of clients, a node, all nodes, a subset of nodes,
or a combination of some or all of servers, locations, regions,
groups, clients, nodes, or a subset of servers, locations,
regions, groups, clients, nodes, or for or to all servers, clients,
or nodes.

In embodiments where the conditional protocol control
information is maintained separately from each server, client,
or node, the conditional protocol control information can
optionally include, or can optionally correlate to, an indica-
tion of for which servers, locations, regions, groups, applica-
tions, services, databases or data sources, protocols, clients,
nodes, or supersets, subsets, or combinations thereof, the
conditional protocol control information can be used in

20

25

30

40

45

55

12

adapting protocol attributes. The conditional protocol control
information can be maintained at a single location or multiple
locations; if maintained at multiple locations, each location
can maintain a complete copy of all conditional protocol
control information, or each location can maintain a copy of
a subset of the conditional protocol control information.
Optionally, a conditional protocol information management
and distribution system can create conditional protocol con-
trol information for, and optionally distribute conditional pro-
toco] control information to, each conditional protocol con-
trol information location, groups of conditional protocol
control information locations, or all conditional protocol con-
trol information locations. If conditional protocol control
information locations store a subset of the conditional proto-
col control information, participating servers, clients, or
nodes can optionally use a table, ordered table, shuffled table,
directory, logical name translation system, or information
obtained from, or received from, another server, client, node,
or controller, to determine which conditional protocol control
information location to receive conditional protocol control
information from.

Referring next to FIG. 3, an embodiment of a process 300
for modification of the TCP protocol for various connections
to a server 206. In summary, in the primary embodiment two
nodes on the Internet communicate using TCP, one node
being a client 102 that requests information in block 304, such
as web page content, and the second node being a cache server
206 that provides information in response to a request. The
cache server 206 operates as one of a group of cache servers,
and groups of cache servers are distributed at numerous
points on the global Internet. TCP connections are established
in order to use HTTP to communicate information requests
from clients 102 to servers 206 in block 304 and responses
from servers 206 to clients 102. HTTP utilizes URLs; each
URL begins with the scheme “http”, which is followed by a
host field containing the IP address or name of the host where
the requested information can be found, followed by a path,
which will be used at the server 206 to locate the requested
object or information, optionally followed by a query string.
Thus, the full URL typically is an alphanumeric string con-
taining the scheme, host field, path, and any optional query
string, each part of which is separated from the other parts by
special characters such as “:”, “/”, and “?”. Thus, an example
URL referencing content that can be served by the cache
server 206 in the primary embodiment might look like:

http://customer].webserving.com/folderB/directory/

logo.gif
optionally followed by “?” and a query string. A client 102
requesting this object would send an HTTP message using an
HTTP method called “GET” to the server 206 identified by
the hostname “customer]l.webserving.com” in block 304.
The server identification is accomplished through a DNS
translation of the hostname into one or more IP addresses. The
Domain Name System (DNS) is the name translation system
used in the Internet. The HTTP GET message sent to the
server 206 typically includes part or all of the URL that the
client 102 is requesting. In block 308, some or all of the URL
is compared with entries in the table 220 to determine the
attributes to use for the connection as described further below.

In the primary embodiment, in block 312 the server 206
conditionally adapts the attributes of the TCP protocol for
each TCP connection established by a client 102. Condition-
ally adapting the attributes of the TCP protocol does not
require changes to standard TCP protocol implementations at
every node, i.e., any client 102 that supports standard TCP
(which virtually all Internet and all World Wide Web clients
do) can communicate with the server 206 to get the object via

US 8,750,155 B2

13

a conditionally adapted TCP connection, but may require a
modification to the server’s TCP protocol handler to allow
changes to be made to the TCP protocol attributes by another
program, or on a per-connection basis, or both. Where the
TCP protocol handler provides a facility for programmati-
cally making these changes, the content serving application
may require an interface enabling it to communicate condi-
tionally adapted TCP protocol attributes to the TCP protocol
handler. In the primary embodiment, a set sockets statement
can be used to communicate conditionally adapted TCP pro-
tocol attributes from the content serving application to the
TCP handler 214, which can be a modified TCP software
stack that accepts and implements changes to the TCP proto-
col attributes on a per-connection or per-request basis. In
various embodiments, the TCP handler could be imple-
mented in software or hardware or both, and can be imple-
mented as part of a node or separately from the node, for
example in a switch or other device that provides protocol
services.

Conditionally adapting the protocol for each connection
results in the server 206 concurrently using the TCP protocol
for multiple unrelated connections, wherein the TCP protocol
attributes vary, at least initially and sometimes persistently,
from one connection to another. At block 316, the requested
object or information is sent from the server 206 to the client
102. When a requested object or information is delivered
without any change to the TCP protocol attributes, the stan-
dard TCP protocol] attributes pre-configured for the TCP pro-
tocol handler are used; but when the requested object or
information is delivered with conditionally adapted TCP pro-
tocol attributes, the conditionally determined TCP protocol
attributes are used instead of the standard pre-configured TCP
attributes.

A typical caching content server 206 in actual operating
use in a web hosting service provider environment may typi-
cally service 2,000 to 3,000 requests per second, across 100 to
200 (or more) customers. If half of these requests will use
changed TCP protocol attributes and half will not, then on
average, half of the connections managed by the server 206 at
any one point in time would use the changed TCP protocol
attributes and half would use the standard TCP protocol
attributes as pre-configured in the TCP handler 214. Addi-
tionally, if there are five separate (different) changed TCP
protocol attribute sets across which those requests using
changed TCP protocol attributes are evenly distributed, then
on average at any one point in time a server 206 would
concurrently be operating TCP connections with six different
sets of TCP protocol attributes: 50% of'the connections would
utilize standard pre-configured TCP protocol attributes, and
10% would utilize each of the five possible changed TCP
protocol attribute sets.

In the primary embodiment, the server 206 bases the con-
ditional adaptation of the attributes of the TCP protocol on the
alphanumeric URL string provided by the client 102 in the
HTTP GET message. In the primary embodiment, the condi-
tional protocol control information is in the form of a table
220 containing partial and/or whole URLs for comparison,
the table 220 is stored on the server 206, and the table 220 is
generally kept reconciled on all servers 206. The server 206
compares the alphanumeric URL string provided by the client
102 in the GET request to the table 220 and identifies the most
specific match from left to right that it can find in the table 220
in block 308. Taking our earlier example and assuming a
simplified table, the sole Table shows mappings from whole
and/or partial URLs into TCP attribute sets comprising spe-

25

30

35

40

45

50

55

60

65

14
cific protocols attributes (identified as “attrl”, “attr2”,
“attr3”, etc.) to be used and the appropriate value or setting for
that use of that attribute.

Table Mapping to TCP attribute sets

Partial URL TCP Attribute Set

http://customerl.webserving.com/
folderA/

htip://eustomerl .webserving.com/
folderB/fastnet.com
http://customer2.webserving.com/
htip://customer3. webserving.com/

attrl = yes, attr3 = 25, attr4 = low
attr] =no, attr2 = 1, attr4 = high

attr3 = 50, attr6 = fast
attr] = yes, attr3 = 25, attr4 = low

The URL in the example above, “http://
customer] .webserving.com/folderB/directory/logo.gif,”
would be matched against the second line-entry in the table.
The TCP protocol attribute set (group of TCP protocol
attributes) to be used for the TCP connection that services, or
responds to, this HTTP GET message from this client 102
would be “attrl=no, attr2=1, attr4=high” and the TCP proto-
col attributes for this TCP connection would be set accord-
ingly. This simplified table example also illustrates that the
scheme and host name may be sufficient for a matching entry,
such as in the case of the entry “http:/
customer3.webserving.com,” or the host name alone may be
sufficient, such as in the case of the entry “fastnet.com.” This
simplified table example also illustrates that there may be a
null entry in the table, as in the case of “http://
customer2.webserving.com”; in this simplified table
example, the null entry signifies use of the standard pre-
configured TCP protocol attributes. Note that an actual table
in the primary embodiment would contain more information
than the simplified example table shown here, as discussed.

The table 220 can be modified from time to time, including
adding new entries, changing the contents of existing entries,
and deleting entries. When a new version of the table 220 is
created, copies of the new version of the table 220 are distrib-
uted to the servers 206 in the global group of cache servers.
Optionally, the table 220 can have an expiration date and time,
after which the server 206 will stop using the table 220 if it is
out-of-date and has not been replaced with an updated table
220; under this condition, the server 206 would then use the
standard TCP protocol attributes for connections until the
server 206 received an updated or unexpired table 220.

In the primary embodiment, the conditional protocol con-
trol information is combined with other information, such as
customer billing codes and other customer-specific informa-
tion, that is distributed to all servers 206, in order to minimize
the number of tables that are distributed to, and reconciled
throughout, the global group of servers. This embodiment has
the advantage of simplifying administration, change manage-
ment, and rollback in the event that distribution of a new table
220 causes a problem or error condition, but the disadvantage
that the conditional protocol adaptation is the same for any
given entry in the table 220 at every server 206, regardless of
the server’s location or other factors. In other embodiments,
as discussed, the conditional protocol control information can
vary from one server 206 to another.

Referring to FIG. 4, an embodiment of a process for poten-
tially modifying protocol attributes on a connection-by-con-
nection basis is shown. The depicted portion of the process
begins in block 416 where a uniform resource indicator (UR1)
is requested by the client 102. The cache function 208 of the
server 206 receives the request for the content object. The

US 8,750,155 B2

15

URlI is evaluated by the protocol attribute selector 212 to find
amatch to something in the table 220. The table 220 is queried
in block 424 for any attributes. Retrieved attributes are com-
municated to the TCP handler 214 in block 428. The connec-
tion is established in block 432 according to the selected
attributes to connect the end user system 102 with the server
206. The content object is delivered in block 436. This pro-
cess is performed on each URI such that each connection or
socket can be independently controlled, if desired. Indeed,
two different end user systems 102 could request the same
content object and it could be delivered in a very different
manner with different selected protocol attributes for each
user.

Referring to FIG. 5, a block diagram of an embodiment of
a content delivery system 500 is shown. Content delivery
system 500 operates in a manner that is similar to the content
delivery systems of FIGS. 1-2 and therefore the description of
those systems is also applicable to the present embodiment.
While continuing reference will be made to the preceding
embodiments, in the interest of clarity, the discussion of com-
mon elements and functionality will not be repeated.

As illustrated, end user computers 102 access the global
internet 104 through autonomous systems 232. Autonomous
systems 232 may include internet service providers which
offer end users access to the global internet 104 over a private
communication network. Different providers may offer dif-
ferent types of service and may serve different geographic
areas. For example, autonomous system AS1 can represent a
DSL communication network such as those operated by
AT&T or Qwest Communications, or it could be a cable
access network such as those operated by Cox Communica-
tions in the United States, or by Rogers Communications in
Canada. Autonomous system AS2 could be a satellite com-
munication network, a cellular network, a WiMAX (IEEE
802.16) network, Wi-Fi™ (IEEE 801.11) access, and the like.
Depending upon the underlying communications technology,
autonomous systems 232 can present different network char-
acteristics that are relevant to the performance of a transport
layer protocol such as TCP.

Content delivery servers 206 are also connected to the
global internet 104 and can be connected to corresponding
autonomous systems 232. As shown, content server 206-1 is
connected to autonomous system 232-1 by router 236-1 and
content server 206-2 is connected to autonomous system
232-2 by router 236-2. Routers 236 thus provide direct links
L1, L2 between servers 206 and their corresponding autono-
mous systems 232. In some embodiments, servers 206-1,
206-2 can be edge servers that are collocated with the autono-
mous system network infrastructure and provide large band-
width and fast response times for content distribution to end
users in a particular location. In an exemplary embodiment,
each server 206 is configured to handle approximately 2000
connections per second and can support a 10 Gbps link to its
corresponding autonomous system. Of course, the number of
servers, number of connections, and data rates may vary
based on the location served, traffic patterns, hardware capa-
bilities, and other factors.

Servers 206 also communicate with origin server 240. Ori-
gin server 240 can act as a source of the content distributed to
end users. For example, servers 206 may cache content
received from origin server 240 and may use the cached
content to fulfill end user requests. If requested content is not
found in their respective caches, servers 206 can send a
request for the missing content to origin server 240. When
requesting content, servers 206 can report information about
the content request as well as the conditionally adapted pro-
tocol parameters to the origin server 240. The origin server

20

25

40

45

55

60

65

16

240 can collect, compile, and distribute information to servers
206 for use in adapting connection parameters. For example,
the origin server 240 can function as part of a CPIMDS and
can distribute URL tables 220 and other protocol perfor-
mance information to servers 206 as previously discussed.

FIG. 6 is a functional block diagram of content distribution
server 206 according one embodiment of the present inven-
tion. As shown, server 206 includes a processor 244, memory
248, one or more network interfaces 252, and a data store 220.
Although not shown, server 206 can also include a cache
function 208 and a content cache 210 as previously described.

Network interfaces 252 can include a plurality of ports
(P1,..., PN)for sending and receiving data over a connecting
network. In some embodiments, at least one network inter-
face is dedicated to providing a high-bandwidth link to an
autonomous system and can be matched to its particular net-
work characteristics. Additional ports and/or network inter-
faces can provide access to the global internet 104, origin
server 204, or other parts of a content delivery system.

Processor 244 executes programmable instructions for
managing the delivery of content to end user computers 102
and can include one or more general purpose microprocessors
orapplication-specific hardware elements. As shown, proces-
sor 244 is coupled to memory 248 which can include any
combination of volatile or non-volatile computer-readable
storage such as random access memory (RAM), read only
memory (ROM), magnetic disk storage, and the like.
Memory 248 can provide a data store 220 which, as previ-
ously described, can be a table or other data structure includ-
ing information for modifying transport layer performance
parameters. Data store 220 is discussed further in connection
with FIG. 8.

Server 206 can include a number of data sources which
respond to content requests from end users. In one embodi-
ment, processor 244 supports a protocol stack that enables
changes affecting the performance of the transport layer to be
made from higher layers in the stack on a per-connection or
per-request basis. This enables server 206 to receive a content
request from an end user computer over an existing connec-
tion, gather information about the request, and intelligently
modify the performance of the connection based on informa-
tion from the request. In this way, for example, server 206 can
modify TCP performance parameters based on known char-
acteristics of the connecting network, the geographic location
of the end user, metadata associated with the requested con-
tent, a service level of the content provider, link utilization, or
any combination of these and other factors.

FIG. 7 illustrates a modified TCP protocol stack 700 such
as can be included as part of content server 206 according to
one embodiment of the present invention. As shown, layers
710-740 correspond roughly to layers of the standard OSI
network model. At the lowest Jayers 710 in the protocol stack
(physical and data link layers), data bits are received at the
network interface hardware and assembled into data units for
delivery to the next higher layer. Here, a network layer 720
includes an IP module that receives IP packets from the lower
layers and determines an appropriate transport layer protocol
based on their header information. With transport control
protocol, network layer 720 sends TCP messages to the trans-
port layer 730 which, in turn, passes application messages to
data sources 750 in the application layer 740.

In operation, an end user computer 102 can establish a TCP
connection with content server 206. The connection can be
created using a collection of TCP parameters which are pre-
configured at the server and do not necessarily reflect infor-
mation about the end user or the way in which the end user
computer is connected to the server. For example, referring

US 8,750,155 B2

17

again to FIG. 5, computer 102-1 can initiate a connection
C2.1 with server 206-1 1o start a TCP session. Once the
connection is established, the end user can send a content
request over the connection. As illustrated, a single end user
computer 102 can establish multiple connections to a given
server 206 and each connection can carry multiple content
requests. Protocol stack 700 is configured such that TCP
settings can be adjusted on a per-connection or even a per-
request basis.

When a content request is received at server 206, it is
conveyed through protocol stack 700 to an appropriate data
source 750 in the application layer 740. For example, a web
server 750-1 can respond to requests for web pages, a caching
application 750-2 can respond to file requests, and an appli-
cation server 750-N can respond to requests for application
services. Server 206 can include any number or arrangement
of data sources 750 and each data source can respond to
multiple content requests.

Each data source 750 can interact with a TCP handler 760
at the transport layer 730 to modify its connections. In one
embodiment, TCP handler 760 enables the data sources to
modify the timing at which packets are sent to the end user
computer to be more or less aggressive based on information
gathered from the content request. TCP handler 760 can also
modify the pace at which packets are sent. Pacing can indicate
that a burst of packets should be sent as soon as possible or
that data transmission should be spread out over time. The
maximum TCP send window (“send buffer size”) for a con-
nection can also be adjusted. For example, in some embodi-
ments, TCP handler 760 can adjust the maximum send buffer
to be a multiple of a standard size and can permit buffer
utilization to increase until it reaches the maximum size.
Alternatively, TCP handler 760 can vary the number of bytes
allocated for a particular connection directly.

Generally speaking, each content request has at least two
pieces of information. These include a source address of the
end user computer and an identifier corresponding to the
requested content. For example, a data source 750 that
responds to the request for sample URL, http://
customer].webserving.com/folderB/directory/logo.gif,
would know the JP address of the requesting computer (e.g.,
abc.def.ghi) as well as the file name of the requested content
(logo.gif). From this starting point, server 206 can obtain
additional information from data store 220 with which to
modify the transport layer parameters of the TCP connection.

FIGS. 8A-8C illustrate partial exemplary data elements
810-850 such as can be maintained in data store 220 and used
for determining modified parameters for a TCP connection.

FIG. 8A illustrates exemplary data corresponding to a
requested content object. In particular, table 810 can repre-
sent a collection of metadata 810. Metadata for each
requested object can include a file name, file size, file type,
and content provider as well as TCP attributes associated with
the content object. For example, attr] can represent pacing on
the TCP connection. In some embodiments, pacing is dis-
abled for small files and enabled for large files. This can
permit content requests involving a large number of small
files to be fulfilled with quick bursts and can facilitate a more
even delivery of large content. TCP attributes can also corre-
spond to the type of data such as whether the requested
content is text or video information.

Table 820 includes information about content providers.
Each content object can be associated with a content provider.
The associated content provider can be identified in the file
metadata or it can be determined from the URL of the content
request. In some cases, content providers can select a service
level for the distribution of their content on the content deliv-

15

25

30

35

40

45

50

55

60

65

18

ery system. Among other possibilities, requests for content
from providers that choose a premium service level can be
biased in favor of increased performance. For example,
requests for provider ABC’s content can be preferentially
modified (e.g., attr6=fast) and, when appropriate, can be allo-
cated a relatively larger send buffer (e.g., attr4=300,000). By
contrast, requests for provider DEF’s content at the standard
service level can be assigned a smaller send buffer (attr4=100,
000) and modified only on a best efforts basis (attr6=slow).
Service level can also set on a per-request basis. For example,
a customer can elect a high level of service by adding infor-
mation to the request query string.

FIG. 8B illustrates exemplary data corresponding to the
network address of an end user computer. Table 830 provides
an association between IP address, geographic location, and
autonomous system number. A source IP address can be
obtained from TCP header information and used to identify a
geographic region of the end user computer. The geographic
region can be a city, state, country, or continent and can
provide a rough estimate of the distance or round trip time
from the server 206 to the end user computer. In addition,
geographic location can also be a rough indicator of service.
For example, network communications in Asia may be char-
acterized by a higher latency than network connections in
Europe or some other location. These differences can be
factored into the TCP attributes so that, for example, more
aggressive timing parameters can be used with Asia-based IP
addresses.

Table 830 can also store information about primary routes
to particularlocations. For example, a considerable amount of
network traffic destined for South America passes through
servers in Florida and other primary gateway locations. The
attributes in table 830 can be biased to optimize TCP perfor-
mance based on conditions at these gateway servers. For
example, TCP timing parameters may be adjusted based on
traffic statistics and load along a primary route such that
transmit timing for South American connections is made
more or less aggressive. Many other location-specific adjust-
ments are possible within the scope of the present invention.
In some embodiments, cost and path information can also be
included. As an example, transit charges and other direct costs
of providing service can be tracked as well as indirect or
resource costs.

Table 840 provides information about the autonomous sys-
tems. Server 206 can determine an autonomous system (AS)
number for an end user computer based on the source address
of a content request. The AS number, in turn, can be used to
obtain additional information for modifying TCP parameters.
For example, if it is known that a particular AS is associated
with a type of network, the characteristics of the network
technology can be used to determine appropriate TCP param-
eters for a connection. Cable networks can have a relatively
high bandwidth and may be less prone to saturation than DSL
networks. Satellite connections, on the other hand, are typi-
cally associated with high Jatency. Server 206 can take advan-
tage of these characteristics by matching timing and pacing
parameters to the particular type of network.

When server 206 is collocated at an AS data center, link
statistics can be maintained and used to determine TCP
parameters. As a link nears full capacity, for example, it may
be inappropriate to increase the timing or send buffer size of
connections. In some embodiments, the preconfigured TCP
parameters are used when link utilization exceeds a predeter-
mined threshold. Thus, among other possibilities, the
attributes associated with AS information can indicate
whether or not TCP parameters should be modified and, if

US 8,750,155 B2

19

modification is appropriate, which parameters are best suited
for known characteristics of the AS network.

FIG. 8C illustrates exemplary data corresponding to server
utilization. In some embodiments, each content distribution
server 206 has a limited amount of bandwidth and is intended
to support a certain network load. As the server approaches its
limits, it may be appropriate to scale back on resource allo-
cation to TCP connections. Conversely, when the server expe-
riences a light load, it may be appropriate to allocate more
system resources to improving the performance of TCP con-
nections. Table 850 provides information for judging load at
a content distribution server, including a bandwidth alloca-
tion (BW) measures and a connection rate (CPS).

By way of illustration, assume that a particular server 206
can support up to 2,000 connections per second and has
available bandwidth of 1 Gbps. When connection rates and
bandwidth usage are low, more resources are available for
modifying connections. In that case, it may be appropriate to
use more aggressive timing, larger buffers and other perfor-
mance enhancements. Thus, for example, connections to
server E1 may be modified by increasing the maximum send
buffer size to 300,000 bytes and biasing towards aggressive
timing and/or pacing utilization. On the other hand, server
E56 is nearing full capacity and may therefore bias new
connections to the preconfigured TCP parameters.

As will be readily appreciated, many different combina-
tions of factors can affect when and how a TCP connection is
modified. Different weights and precedence can be assigned
to the different types of information available from the data
store 220. For example, system resources may have the high-
est precedence, followed by service level, and then by meta-
dataand AS factors, and finally by geographic considerations.
Across categories, different weights may be assigned to the
attributes so that a data source 750 can determine modified
TCP parameters based on the net effect of some or all of the
available information.

FIG. 9 shows exemplary performance profiles 900 such as
can be utilized to modify TCP parameters according to
embodiments of the present invention. Rather than determin-
ing parameters by combining individual factors, server 106
can include predetermined profiles for content requests. In the
example, profile P1 provides TCP settings for sending large
files to nearby (low-latency) users. As illustrated, a perfor-
mance increase can be realized by pacing such connections
and allowing the TCP send buffer to grow very large. Rela-
tively less aggressive timing adjustments are needed due to
the low latency factor. Profile P2, on the other hand, repre-
sents large file transfers to a latent user. In that case, pacing is
still used with the transfer, but more aggressive transmit tim-
ing may help to compensate for latency and an intermediate
send buffer may be appropriate. Profile P3 can be used to
transfer small files. With small files, it may be desirable to
disable pacing and transmit files in bursts. As a result, a large
send buffer may not be needed.

FIG. 10 shows an embodiment of a process 1000 for modi-
fying protocol attributes on a connection-by-connection or
request-by-request basis. Process 1000 can be performed by a
data source 750 or by the caching function 208 of a content
distribution server 206. At block 1010, a content request R1 is
received over an existing connection C1 at the server. The
request can include the URI of a content object. The content
object may be available in content cache 219, or from origin
server 240, or from some other server accessible through the
content delivery system.

The content request R1 can be conveyed through the lower
layers of protocol stack 700 to the appropriate data source 750
in the application layer 740. Since server 206 is capable of

10

15

25

30

35

40

45

50

55

60

65

20

modifying transport layer parameters on a connection-by-
connection and even a request-by-request basis, the present
process can be repeated for each new request (e.g., R2/C1)
and/or each new connection (e.g., R1/C2) as determined by
the data source 750 or caching function. Note also that that
server 206 need not be dedicated to serving a particular type
of content but can deliver files, images, video, or any other
content available through the content delivery system.

After the request for content is received, the responding
data source 750 determines whether the transport layer
parameters used with the connection and/or request should be
modified. Modifying the transport layer parameters is com-
pletely transparent to the end user; the end user is not required
to install software or monitoring applications to receive a
performance henefit.

At block 1015, the server 206 makes an initial determina-
tion as to whether system load exceeds a predetermined
threshold TH1. For example, the responding data source 750
can query the information in table 850 to determine current
bandwidth usage and system load. If the system is experienc-
ing a heavy load, pre-configured TCP parameters may be
used. In that case, the process ends at block 1060. On the other
hand, if system load is below threshold TH1, a further deter-
mination is made as to link utilization. This can involve, for
example, accessing the information in table 840. If link uti-
lization exceeds a predetermined threshold TH2, then the
process can terminate at block 1060 and preconfigured TCP
parameters can be used with the connection/request.

When there is sufficient system resources and link capac-
ity, a determination can be made regarding the TCP param-
eters based on file size. The size of a requested file can be
determined by accessing the metadata of table 810. At block
1025, the file size is compared to a threshold value TH3 to
determine ifitis a “large” file. If the file is not a large file, then
at block 1030 it is compared to another threshold TH4 to
determine if itis a “small” file. If the requested file does not fit
in either category, then the preconfigured TCP settings may
be used. Otherwise, for small files, pacing canbe disabled and
an appropriate send buffer size can be determined at block
1035. Thereafter, at block 1065, the responding data source or
cache application directs the TCP handler to modify the con-
nection for the small-file transfer.

With large files, it can be useful to make a further determi-
nation as to latency. At block 1045, a round trip time (RTT)
from the server to the end user computer is determined. This
can be done by sending ICMP messages to the end user’s
address and measuring the response time. If RTT is less than
a predetermined threshold THS, then the connection may be
characterized as low-latency. In that case, a relatively large
send buffer size and less aggressive TCP timing may be
appropriate. At block 1050, these settings are determined by
the data source or cache application either based on informa-
tion from individual items in data store 220 or by selecting a
performance profile. On the other hand, if RTT exceeds the
threshold, the connection may be characterized as high-la-
tency. At block 1055, parameters for the large-file, high-
latency transfer are determined. At block 1065, the data
source or cache function modifies the connection through the
TCP handler for the large file transfer.

FIG. 11 shows an additional embodiment ofa process 1100
for modifying protocol attributes. Process 1100 can be per-
formed by a data source 750 or by the caching function of
content distribution server 206. The process begins at block
1110 when a request R1 is received from an end user com-
puter over connection C1. As previously noted, the process
can be repeated for each new request (e.g., R2/C1) and/or

US 8,750,155 B2

21

each new connection (e.g., R1/C2) as determined by the data
source 750 or caching function.

At block 1115, the IP address of the client is determined
and the data source or cache function begins to gather infor-
mation for modifying the connection. Initially, a geographic
location and autonomous system of the end user computer are
determined based on the IP address (blocks 1120-1125). If'the
server has a dedicated link to the AS, link utilization is deter-
mined at block 1130 and compared to a predetermined thresh-
old TH2. When the link capacity is below the threshold, the
process terminates and the standard or pre-configured TCP
parameters are used for the connection/request. If link utili-
zation does not apply to the connection, or if link utilization is
below threshold TH2, the process continues.

In this embodiment, a predetermined profile is selected
based on the geographic location of the client and the type of
connection. For locations in the United States served by cable
access networks, blocks 1135-1140, a first geographic per-
formance profile G1 can be used. Relatively low latency may
be assumed for US locations and this profile can adjust TCP
timing to take advantage of the relatively high burst capability
of cable networks. For locations in the United States served
by digital subscriber line (DSL) networks, blocks 1145-1150,
a second geographic performance profile G2 can be used.
This profile may use slightly less aggressive timing with a
relatively large send buffer. Finally, for US locations served
by satellite networks, blocks 1155-1160, a third geographic
profile G3 can be used. This profile may assume high latency
but reliable delivery and therefore use relatively more aggres-
sive TCP timing and an intermediate send buffer size.

Customized profiles can be used for non-US locations or
when autonomous system information is not available as
shown by blocks 1165-1170. For example, a China-specific
profile or an Asia-specific profile can be developed based on
historical network performance measures. Similarly, where a
primary route to a particular destination is known, profiles
may be developed that are customized for the appropriate
connecting network elements. When the appropriate geo-
graphic performance profile has been selected, the data store
or cache function modifies the connection accordingly.

Throughout this document, the terms content delivery and
content download are used and can mean either file download
or streaming delivery. Additionally, a content object can be
either a file or a stream. For example, the content object could
be a voice call stream, a video stream, an image file, a music
file, a live concert, an animation, an advertisement, a web
page, a slide show, data file, hosted software, transactions,
executable software or the like. Content can be static or.
dynamic, can pre-exist on the server, can be created on the
server, or can be created or obtained elsewhere in response to
a request {from a client.

A number of varjations and modifications of the disclosed
embodiments can also be used. For example, some of the
above embodiments discuss use of the TCP protocol or a
transport-layer protocol. Other protocols could be modified
on a connection-by-connection or request-by-request basis in
other embodiments. Also, connection parameters can be
modified based on additional information gathered from or
associated with content requests such as HTTP request head-
ers (e.g., content-length, cookies, content-type, user agent,
etc.), transport layer security (e.g., HTTPS), layer 2 address-
ing (e.g., the MAC address of the router from which the
request was received), port number, IP properties (e.g.,
TOS—terms of service), hostname, and whether or not a
request successfully passed through a rewrite process.

While the principles of the disclosure have been described
above in connection with specific apparatuses and methods, it

—_

0

—_

5

25

30

40

45

65

22

is to be clearly understood that this description is made only
by way of example and not as limitation on the scope of the
disclosure.

What is claimed is:

1. A method for managing delivery of content in a system
comprising a server and an end user computer, comprising;

establishing a first connection at the server for communi-

cating with the end user computer;

receiving a request for content from the end user computer

over the first connection, the request include a universal
resource locator (URL);

determining one or more parameters relating to the perfor-

mance of the first connection using information from the
request, wherein the determined one or more parameters
relate to utilization of available processing or memory
capabilities of part or all of a system supporting the first
connection;

determining one or more first values of attributes based on

the URL and the one or more parameters;
modifying second values of attributes for the first connec-
tion at a transport layer to result in the determined one or
more first values, the second values of the attributes for
the first connection thereafter influencing utilization of
the available processing or memory capabilities of the
part or all of the system supporting the first connection;

changing, on a connection-specific basis, a connection pro-
tocol stack operator based upon the modified values of
the attributes; and

sending the requested content from the server to the end

user computer such that the transport layer manages
delivery of the content in accordance with the modified
second values of the attributes.

2. The method of claim 1, wherein the one or more first
values of attributes are further based on an estimated location
of the end user computer.

3. The method of claim 1, further comprising determining
a latency characteristic of the first connection, wherein at
least one of the second values of the attributes for the first
connection is modified based on the latency characteristic.

4. The method of claim 1, further comprising:

determining a connection type of the end user computer;

and

determining a latency characteristic associated with the

connection type, wherein at least one of the second
values of the attributes for the first connection is modi-
fied based on the latency characteristic associated with
the connection type of the end user computer.

5. The method of claim 1, further comprising;

determining the size of the requested content; and

measuring a round trip travel time between the server and
the end user computer when the data size exceeds a
predetermined value, wherein at least one of the second
values of the attributes for the first connection is modi-
fied based on the size of the requested content and the
round trip travel time.

6. The method of claim 1, further comprising determining
an autonomous system from which the first connection is
received, wherein at least one of the second values of the
attributes for the first connection is modified based on net-
work characteristics of the autonomous system.

7. The method of claim 1, further comprising determining
a link utilization between the server and an autonomous sys-
tem of the end user computer, wherein at least one of the
second values of the attributes for the first connection is
modified based on the link utilization.

8. The method of claim 1, further comprising determining
a predetermined performance profile for the first connection

US 8,750,155 B2

23

using the information from the request, wherein at least one of
the second values of the attributes for the first connection is
modified based on the predetermined performance profile.
9. The method of claim 1, further comprising:
determining whether the requested content is available at
the server;
obtaining the requested content from a second server when
the requested content is not available at the server; and
caching the requested content at the server for at least a
predetermined time.
10. The method of claim 1, wherein modifying the second
values of the attributes for the first connection thereafter
adjusts a timing of data transmission at the transport layer in
accordance with the one or more parameters.
11. The method of claim 1, wherein modifying the second
values of the attributes for the first connection thereafter
adjusts a transport layer send window associated with the first
connection.
12. The method of claim 1, wherein modifying the second
values of the attributes for the first connection thereafier
adjusts a burst size of the first connection so as to pace data
transmission according to the one or more parameters.
13. A content distribution server, comprising:
anetwork interface having a plurality of ports configured to
send and receive data over a connecting network;
a processor coupled to the network interface and config-
ured to manage a plurality of connections to end user
computers;
a protocol handler configured to establish the plurality of
connections with the end user computers according to
predetermined transport layer parameters of the content
distribution server and to manage data transmission over
the plurality of connections; and
a data source configured to supply requested content to the
end user computers over the plurality of connections,
wherein the data source is configured to monitor a first
connection for a request to:
determine one or more parameters for the first connec-
tion based on the request, the determined. one or more
transport layer parameters relating to utilization of
available processing or memory capabilities of part or
all of a system supporting the first connection;

determine one or more first values of attributes based on
a URL and the one or more parameters, the request
including the URL;

direct the protocol handler to modify second values of
attributes for the first connection to result in the deter-
mined one or more first values, the second values of
the attributes for the first connection thereafter influ-
encing utilization of the available processing or
memory capabilities of the part or all of the system
supporting the first connection; and

change a connection protocol stack operator based upon
the modified second values of the attributes.

14. The content distribution server of claim 13, wherein the
one or more first values of atiributes are further based on an
estimated location of the end user computer.

—

5

25

35

40

45

35

24

15. The content distribution server of claim 13, further
comprising a protocol attribute information store having
information relating data associated with a content request to
one or more connection parameters, wherein the data source
determines at least one of the first values based on informa-
tion retrieved from the protocol attribute information store.

16. The content distribution server of claim 13, wherein the
data source determines a geographic region corresponding to
a destination address of the first connection, and wherein at
least one of the one or more first values is further based on the
geographic region.

17. The content distribution server of claim 13, wherein the
data source determines an autonomous system associated
with the first connection, and wherein at least one of the one
ormore first values is further based on network characteristics
of the autonomous system.

18. The content distribution server of claim 13, wherein the
data source determines a latency characteristic associated
with the first connection based on the information from the
request and directs the protocol attribute selector to modify at
least one of the second values of the attributes based on the
latency characteristic.

19. The content distribution server of claim 13, wherein the
protocol handler is configured to adjust a timing of data
transmission at a transport layer based on the one or more first
values.

20. A computer program product comprising a non-transi-
tory computer-readable medium encoded with one or more
sequences of one or more instructions which, when executed
by a processor, cause a computer to:

establishing a first connection at the server for communi-

cating with an end user computer;

receiving a request for content from the end user computer

over the first connection, the request include a universal
resource locator (URL);

determining one or more parameters relating to the perfor-

mance of the first connection using information from the
request, wherein the determined one or more parameters
relate to utilization of available processing or memory
capabilities of part or all of a system supporting the first
connection;

determining one or more first values of attributes based on

the URL and the one or more parameters;
modifying second values of attributes for the first connec-
tion at a transport layer to result in the determined one or
more first values, the second values of the attributes for
the first connection thereafter influencing utilization of
the available processing or memory capabilities of the
part or all of the system supporting the first connection;

changing, on a connection-specific basis, a connection pro-
tocol stack operator based upon the modified values of
the attributes; and

sending the requested content from the server to the end

user computer such that the transport layer manages
delivery of the content in accordance with the modified
second values of the attributes.

Exhibit C

US008856263B2

az United States Patent a0) Patent No.: US 8,856,263 B2
Fainberg et al. @5) Date of Patent: Oct. 7, 2014
(54) SYSTEMS AND METHODS THERETO FOR (51) Int.CL
ACCELERATION OF WEB PAGES ACCESS GO6F 15/167 (2006.01)
USING NEXT PAGE OPTIMIZATION, HO4L 29/08 (2006.01)
CACHING AND PRE-FETCHING (52) US.CL
TECHNIQUES CPCccoovvvvvvvvvirnennenn. HO4L 67/2847 (2013.01);
HO4L 67/02 (2013.01)
(71) Applicant: Limelight Networks, Inc., Tempe, AZ USPC 709/213; 709/219; 709/203; 715/827
Us) (58) Field of Classification Search
USPC ...cevvvvvinenn 709/200, 203, 213, 219; 715/827
(72) Inventors: Leonid Fainberg, Tel Aviv (IL); Ofir See application file for complete search history.
Ehrlich, Tel Aviv (IL); Gil Shai, Tel .
Aviv (IL); Ofer Gadish, Rishon LeZion ~ (°6) References Cited
(IL); Amitay Dobo, Tel Aviv (IL); Ori US. PATENT DOCUMENTS
Berger, Tel Aviv (IL) -
6,182,133 B1* 1/2001 HOIVItZ ...ccovvicirnicnnnns 709/223
(73) Assignee: Limelight Networks, Inc., Tempe, AZ 7,363,291 B1* 4/2008 Page 707/706
us) 7,689,663 B2* 3/2010 Kinnanetal. 709/217
8,156,419 B2* 4/2012 Choudhary et al. .. 715/209
fnae : : : : 2003/0110296 Al* 6/2003 Kirschetal. 709/246
(*) Notice: Subject to any disclaimer, the term of this 5400086375 A1* 52004 Sefhi etal. . . 7097218
patent is extended or adjusted under 35 2004/0205149 A1* 10/2004 Dillon et al.cooooccv... 7091217
U.S.C. 154(b) by 0 days. (Continued)
(21) Appl. No.: 14/137,598 Primary Examiner — El Hadji Sall
. (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
(22) Filed: Dec. 20, 2013 Stockton LLP
(65) Prior Publication Data (57) ABSTRACT
US 2014/0237066 Al Aug. 21,2014 A method and system for acceleration of access to a web page
using next page optimization, caching and pre-fetching tech-
niques. The method comprises receiving a web page respon-
Related U.S. Application Data sive to a request by a user; analyzing the received web page
(60) Continuation of application No. 13/731,438, filed on for possible agceleratioq improvements of the V{eb page
Dec. 31. 2012, now Pat. No. 8.661.090. which is a access; generating a modified web page of the received web
continuation o% application No.’13/4i71 2,11 filed on page using at least one of a plurality of pre-fetching tech-
May 14, 2012, now Pat. No. 8,346 88’5 w’hi ch s a niques; providing the modified web page to the user, wherein
division of app,lication No. 12/848.611. filed on Aug the user experiences an accelerated access to the modified
5 9010. now Pat. No. 8.321.533. " web page resulting from execution of the at least one of a
’ ’ T plurality of pre-fetching techniques; and storing the modified
(60) Provisional application No. 61/213,959, filed on Aug. web page for use responsive to future user requests.

3, 2009, provisional application No. 61/308,951, filed
on Feb. 28, 2010.

20 Claims, 5 Drawing Sheets

/160
130-1
71201 -
Web Page]E;(;zz
Server
~— .
b ®
® ®
® 120 ~130-m
Web Page User
Server Node

118

Web Page Access
Accelerator

US 8,856,263 B2

Page 2
(56) References Cited 2008/0228772 Al* 9/2008 Plamondoncccoueeen 707/10
2010/0017696 Al* 1/2010 Choudhary ct al. . 715/205
U.S. PATENT DOCUMENTS 2011/0087966 Al* 4/2011 Leviathancceee 715/745

2008/0195712 Al*

8/2008 Linetal. .ooovirivivicinens 709/206 * cited by examiner

U.S. Patent

Oct. 7,2014 Sheet 1 of 5 US 8,856,263 B2
7160
£120-1 aXig
Web Page]E;;s;
Server
s .
&
® 1P Network ®
® 120 o ~130-m
Web Page User
Server Node
Web Page Access
140 Accelerator
FIG. 1
1201 140 ~130-1
Web Page 44 12~ 146~ User
Server Node
M ——» Scrver > /
® ' . e
& Back Froat ®
& ,i20q | B0 4 End e .
0 ache Cache ~130-m
: BEC (FEC)
Web Page] (BEQ) User
Server Y Node

FIG. 2

U.S. Patent Oct. 7, 2014 Sheet 2 of 5 US 8,856,263 B2

{ STarRT) J‘SGO
h

. 8310

/ Recelve pagoe /

3 8320
Cache received web page in
the back~end cache

833
Analyze page for possible
acceleration tnorovements

Improvements
9

Apply aceeleration
meihods to a modified
web pape of the recetved

@ " 360
Provide modified
page 1o user node

&£

S37G
Store {modified) web page in
font-end cache

FiG. 3

U.S. Patent

Oct. 7,2014

Sheet 3 of 5

{ START }

L

, S411

/ Reveive

@ Quiery /

E

y 5412

Deterinine a stmilar otd
page (page-1)

2 S413

Creaie o pointer to the
new page (page-2)

A

¥ 5414

Set 2 pointer o the

of page-2

y

Sd18
Yes

Poinier
reacted the end

US 8,856,263 B2

of page-2?

8416

Compute the dHY and
owput 2 st of aon-
matching data blocks

v 5417

Send 1o cliont side a list
of non-matching data
blacks

Y

S418

Advemce poirder

FIG. 4A

U.S. Patent Oct. 7, 2014 Sheet 4 of 5 US 8,856,263 B2

< START }

. $421
Reccive a list of
non-maiching date
blocks
v 422

Croate a1t cmpty container
for page-2

‘ §423

Starl fror the beginng
of the received list

x

5424
8428
Reached the)
cnd of lh;’ Yes Qutput the container
tist?
Ne ¥
END
3425
ot Does the ety of S4z6
— LR P O N
Append tot}w container g | Wy the fist deseribe Yes | Appendto the comlainer
block foni the st a block inpage- the data from the block
17
4 5428
Advance 1 the next gntry
i shee list

FIG. 4B

U.S. Patent Oct. 7, 2014 Sheet 5 of 5 US 8,856,263 B2
Biock Index Block type Block Content
0 New Data ¥X
FIG. 8A
Biock Index Block type Start Position End Position
1 Old Data 1 3
FiG. 5B
Block index Block type Start Position End Position
2 Qlg Data 5 7

FIG. 5C

US 8,856,263 B2

1
SYSTEMS AND METHODS THERETO FOR
ACCELERATION OF WEB PAGES ACCESS
USING NEXT PAGE OPTIMIZATION,
CACHING AND PRE-FETCHING
TECHNIQUES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/731,438, filed Dec. 31, 2012, entitled “SYS-
TEMS AND METHODS THERETO FOR ACCELERA-
TION OF WEB PAGES ACCESS USING NEXT PAGE
OPTIMIZATION, CACHING AND PRE-FETCHING
TECHNIQUES,” which is a continuation of U.S. patent
application Ser. No. 13/471,211, filed May 14, 2012, entitled
“SYSTEMS AND METHODS THERETO FOR ACCEL-
ERATION OF WEB PAGES ACCESS USING NEXT PAGE
OPTIMIZATION, CACHING AND PRE-FETCHING
TECHNIQUES,” which is a divisional application of U.S.
patent application Ser. No. 12/848,611, filed Aug. 2, 2010,
which is a non-provisional application claiming the benefit
and priority under 35 U.S.C. §119(3) of U.S. Provisional
Patent Application 61/213,959, filed Aug. 3, 2009, and U.S.
Provisional Patent Application 61/308,951, filed Feb. 28,
2010. The entire disclosure of each of the above-listed appli-
cations is incorporated herein by reference for all purposes.

FIELD OF THE INVENTION

The present invention relates generally to accesses to web
pages, and more specifically to the acceleration of access to
such web pages from the user’s experience perspective.

BACKGROUND OF THE INVENTION

The traffic over the world-wide-web (WWW) using the
Internet is growing rapidly as well as the complexity and size
of the information moved from sources of information to
users of such information. Bottlenecks in the movement of
data from web servers of the content suppliers to the users,
delays the passing of information and decreases the quality of
the user’s experience. Traffic is still expected to increase
faster than the ability to resolve data transfers over the Inter-
net.

Prior art suggests a variety of ways in an attempt to accel-
erate web page content delivery from a supplier of the content
to the users. However, there are various deficiencies in the
prior art still waiting to be overcome. It would be therefore
advantageous to overcome these limitations, as it would result
in a better user experience and reduction of traffic load
throughout the WWW. It would be further advantageous that
such solutions be applicable with at least all popular web
browsers and/or require neither a plug-in nor a specific
browser configuration.

BRIEF SUMMARY OF THE INVENTION

Certain embodiments of the invention include a system for
acceleration of access to web pages. The system comprises a
network interface enabling communication of one or more
user nodes with one or more web servers over a network for
accessing web pages stored in the one or more web servers; an
acceleration server coupled to the network interface for accel-
erating access to the web pages to the one or more user nodes
using at least one pre-fetching technique; a first cache con-
nected to the acceleration server and the one or more user

30

40

45

55

60

2

nodes and operative to cache information associated with
requests directed from the one or more the user nodes to the
acceleration server; a second cache connected to the accel-
eration server and the one or more web servers and operative
to cache information associated with requests directed from
the one or more web servers to the acceleration server; and a
memory coupled to the acceleration server and containing a
plurality of instructions respective of the at least one pre-
fetching technique.

Certain embodiments of the invention further include a
method for acceleration of access to a web page. The method
comprises receiving a web page responsive to a request by a
user; analyzing the received web page for possible accelera-
tion improvements of the web page access; generating a
modified web page of the received web page using at least one
of a plurality of pre-fetching techniques; providing the modi-
fied web page to the user, wherein the user experiences an
accelerated access to the modified web page resulting from
execution of the at least one of a plurality of pre-fetching
techniques; and storing the modified web page foruse respon-
sive to future user requests.

Certain embodiments of the invention also include a
method for acceleration of access to a web page. The method
comprises receiving a request to access a web page; generat-
ing a query that includes at least a URL of the requested web
site and one more URLs of web pages similar to the requested
web page; generating a list of non-matching data blocks
between the requested web page and at least one of the similar
web pages; and generating a web page respective of the
requested web page by combining common data blocks with
non-matching data blocks, wherein the common blocks are
retrieved from the at least one similar web page and the
non-matching blocks are retrieved from the requested web

page.
BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the invention will be
apparent from the following detailed description taken in
conjunction with the accompanying drawings.

FIG. 1 is a schematic block diagram of a system for accel-
eration of web pages access;

FIG. 2 is a schematic diagram of the data flow in a system
for acceleration of web pages access;

FIG. 3 is a flowchart of the processing performed for the
purpose of generating web pages that accelerate access;

FIGS. 4A and 4B are flowcharts illustrating the operation
one of the perfecting acceleration technique in accordance
with an embodiment of the invention; and

FIGS. 5A, 5B, and 5C illustrate an exemplary data struc-
ture created by the technique shown in FIGS. 4A and 4B.

DETAILED DESCRIPTION OF THE INVENTION

The embodiments disclosed by the invention are only
examples of the many possible advantageous uses and imple-
mentations of the innovative teachings presented herein. In
general, statements made in the specification of the present
application do not necessarily limit any of the various claimed
inventions. Moreover, some statements may apply to some
inventive features but not to others. In general, unless other-

5 wise indicated, singular elements may be in plural and vice

versa with no loss of generality. In the drawings, like numer-
als refer to like parts through several views.

US 8,856,263 B2

3

Inan exemplary but non-limiting embodiment of the inven-
tion, a web access acceleration system is placed in the path
between the user nodes and the web servers and is responsible
for integrating the acceleration mechanisms to the web pages
selected for acceleration.

FIG. 1 depicts an exemplary and non-limiting schematic
block diagram of a system 100 for acceleration of web pages
access in accordance with an embodiment of the invention. A
network 110 is connected to one or more web page servers
120, each providing content typically using formatted docu-
ments using, for example, the hypertext markup langnage
(HTML). The network may be a local area network (LAN), a
wide area network (WAN), a metro area network (MAN), the
Internet, the world-wide-web (WWW), the like, and any
combination thereof. One or more user nodes 130 that are
viewers of such web pages content are also connected to the
network 110. A user of a user node 130 typically browses the
content using a web browser that is enabled to display the web
pages. By using, for example but not by way of limitation, a

vniform resource locator (URL) the browser is capable of 2

accessing a desired web page.

The network 110 is also connected a web page access
accelerator (WPAA) 140. In accordance with the invention
instead of providing web page content directly from a web
page server, for example, a web page server 120-1, to a user
node, for example, a user node 130-1, traffic is directed
through the WPA A 140, when applicable, i.e., when config-
ured for accelerated access. Accordingly, a request for web
page content is directed through WPAA 140 that is equipped
with various acceleration mechanisms as further detailed
herein below. In one embodiment of the disclosed invention,
the web servers 120 are part of a server farm (not shown). In
a further embodiment thereof, the WPAA 140 is provided as
part of the server farm. In yet another embodiment of the
invention, the WPA A 140 is integrated as an integral part of a
web page server 120.

FIG. 2 shows an exemplary and non-limiting schematic
diagram of the data flow in a system for acceleration of web
pages access in accordance with an embodiment of the inven-
tion is shown. In addition, the details of the structure of the
WPAA 140 are also shown. For simplicity reasons the net-
work interface is removed, however, a network type interface
is the typical way for such components to communicate with
each other. The WPAA 140 comprises of an acceleration
server 142 that is coupled to storage 148. The storage 148
typically holds instructions for the execution of one or more
acceleration techniques, described herein below in more
detail, that result in accelerating the transfer of web pages
content to a user wishing to access such content. Under the
control of the acceleration server 142, there is a back-end
cache (BEC) 144, connected to the acceleration server 142
and to the one or more web page servers 120-1 through 120-.
The BEC 144 handles requests directed from the acceleration
server 142 to the one or more web page servers 120. By
caching information in BEC 144, overall access to web page
content is accelerated. Under the control of acceleration
server 142 there is a front-end cache (FEC) 146, connected to
the acceleration server 142 and to the one or more user nodes
130-1 through 130-m. The FEC 146 handles requests directed
from the one or more user nodes 130 to the acceleration server
142. By caching information in FEC 146, the overall access to
web page content is further accelerated.

FIG. 3 shows an exemplary and non-limiting flowchart 300
of the processing performed for the purpose of generating
web pages that accelerate access in accordance with an
embodiment of the invention. In S310, a page is received, for
example by the WPAA 140, in response to a request to receive

25

30

35

40

45

50

55

60

65

4

a web page from, for example, web page server 120. Option-
ally in S320, the received web page is stored in a cache, for
example, the BEC 144. In S330, the received web page is
analyzed by acceleration server 142 using one or more accel-
eration and perfecting techniques (methods), to determine
whether acceleration improvements may be achieved. In
S340, it is checked whether improvements were determined
to be achievable, and if so execution continues with S350;
otherwise, execution continues with S360. In S350, the
received web page is modified into a modified web page that
contains one or more acceleration techniques discussed
herein below in more detail. In S360, the modified or the
received web page is provided to the user node 130 that
requested the web page. Optionally in S370, the modified
web page or the received web page, as may be appropriate, is
stored in a cache, forexample FEC 146. In S380, it is checked
whether additional pages are to be handled and if so execution
continues with S310; otherwise, execution terminates.

While reference is made hereinabove to web pages, it can
equally refer to portions of web pages, resources of a web
page, and the like, without departing from the scope of the
invention. Resources of a HTML web page include, but are
not limited to, stylesheet files, Javascript and other script files,
images, video and any other parts of the pages which are not
embedded in the HTML.

The method disclosed above may be performed by the
WPAA 140, but without limitations. May be used in other
web acceleration embodiments of the invention, including,
intepration in a web page server such as a web page server
120.

While the description hereinabove was made with respect
to one particular system, other systems may be deployed to
benefit from the teachings hereinabove and herein below. In
one exemplary and non-limiting embodiment of the inven-
tion, a system that works as a plug-in/filter/extensionto one or
more web servers is used. The flow of data through the system
is the same as described with respect of the system in FIG. 1,
however, it may also utilize knowledge about the data stored
on the web site, such as but not limited to, page template and
images. In yet another exemplary and non-limiting embodi-
ment, the disclosed pre-fetching acceleration techniques may
be implemented in whole or in part as one or more plugins of
aweb site integrated development environment (IDE). Using
a plugin, the inventions herein are integrated into the web site
during its development. The plugin therefore enables at
“compilation” or “build” process of the IDE, changes to the
web site coding made by the user of the web site developer
according to the inventions. This may take place during devel-
opment or automatically implemented during development.
In yet another exemplary and non-limiting embodiment of the
invention, a utility containing, for example and without limi-
tation, a command line component, a user interface (UI)
component or any other interface, is run on the designed web
site code after it is ready, and/or in one or more points-in-time
during the development thereof, to transform the web site
code by employing the inventions herein.

Following are descriptions of acceleration techniques used
with respect to, for example, S350, discussed above. How-
ever, the use of such techniques may be a part of other
embodiments which are specifically included herein.

1. Web-Site and Browser Transparent Pre-Fetching

Conventional pre-fetching of resources in web pages may
be implemented in one of the following ways: a) installing a
browser plug-in or any other desktop software which fetches
resources and pages in the background using its own algo-
rithms; b) introducing new tags and syntax into the HTML,
HTTP and Javascript to provide “hints™ to the browser regard-

US 8,856,263 B2

5

ing a potential pre-fetch, however, modern popular browsers
do not provide any kind of support to such “hint language™;
and c) designing, as a part of the website, a mechanism which
pre-fetches resources with a mechanism that the browsers
support, however, this puts a burden on the designer of the
website to write and maintain this pre-fetch code.

In accordance with an embodiment of the invention, the
pre-fetching is performed by deploying the WPAA 140 in the
communication path between the web page server 120 and the
client or user node 130. In other embodiments of the inven-
tion, pre-fetching of web-pages’ resources can be done using
a proxy, which is a component running on the same machine
as the web server 120 or any other appropriate solutions
capable of achieving the teachings below. Neither the web
page server 120 nor the browser on the user node 130 is ware
that this component exists, i.e., the WPAA 140 is transparent
to the operation of web page servers 120 and user nodes 130.
The WPAA 140 analyzes the pages going through it and
changes the web page to contain the pre-fetch code that may
be created using methods and mechanisms described herein.
The definition of which resources to pre-fetch and where on
the page to locate the code may be defined in configuration,
reached by static analysis of pages or dynamic analysis of
pages and traffic, determined using changing statistics, or
other applicable techniques as well as any combination of
thereof. The code generated instead of the original code of the
web page is designed to be understood and processed by
modern browsers and does not require any additions to it.

One advantage over prior art, is that even if the web site has
not changed, the same page can contain code to pre-fetch
different resources every time. This may be advantageous, for
example, if or when the usage pattern of a web page changes.
Moreover, the fact that neither the user 120 nor the web page
server 130 needs to be aware of the existence of the WPAA
140 between them.

In one embodiment, the WPAA 140 intercepts the web
page and parses it prior to sending it out to a user node 130.
The original web page may reside in the BEC 144. The
acceleration server 142 based on instructions contained in
storage 148 parses the web page in accordance with the inven-
tion described above and provides a modified web page,
which may also be stored in the FEC 146 for future use by
other user nodes 130.

11. Pre-Fetching Resources of Subsequent or Other Pages

Today’s pre-fetch techniques, pre-fetch either whole pages
or the HTML part of the web page. This is problematic if
when the exact next pages are not necessarily known. For
example, if the web page has a dynamic component it may
change between accesses to the web page.

According to the principles of the invention there is per-
formed pre-fetching of the resources of other or subsequent
pages, with or without the HTML page itself. As many of the
resources are common to several or all the pages that may be
fetched and therefore pre-fetching such resources is likely to
save fetching them for other pages.

In one embodiment, the WPAA 140 intercepts the web
page and parses it prior to sending it out to the user. The
original web page may reside in the BEC 144. The accelera-
tion server 142 based on instructions contained in the storage
148 parses the web page in accordance with the invention
described above and provides a modified web page, which
may also be stored in the FEC 146 for future use by other user
nodes 130.

III. Fetching Linked Pages on Demand Prior to Link Access

In some cases, after browsing a site for a while, some of the
new pages load very quickly. Most of their resources are
already in the browser’s cache, so the only non-cached items

20

25

35

40

45

55

60

65

6

are the HTML itself and a few resources which have not been
seen on previous pages yet. In such cases, loading the HTML
from the network is a big percentage of loading the entire web
page, even when the HTML is loaded very quickly.

According to the principles of the invention there is added
a script, for example, Javascript, which detects the mouse
presence over a link, a button, or any other means pointing by
means of a URL, or other applicable means, to another page.
This script may be further enabled to detect whether the focus
is on the link, the button, or otherwise point of entry to another
URL, which is particularly relevant o cases when the navi-
gation is done using the keyboard and not the mouse. After the
detection, the script, might or might not wait a whileto reduce
the number of false positives, before it pre-fetches the rel-
evant page. If, during this time, the mouse moved from loca-
tion of a URL, or has otherwise lost its focus of the web page,
the pre-fetch is canceled. If the page pointed to by the link is
small and the server is fast, many times it is possible to bring
the page to the browsers cache before the link is actually
clicked, thus substantially reducing the load time of that page
as it appears to the user.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for adding a
detection script implementing the principle described above.
In another embodiment, the WPAA 140 intercepts the web
page and parses it prior to sending it out to the user. The
original web page may reside in the BEC 144. The accelera-
tion server 142 based on instructions contained in storage 148
parses the web page in accordance with the invention
described above and provides the web page with the detection
script implementation. The modified web page may also be
stored in the FEC 146 for future use by other user nodes 130.
IV. a Path Dependent Web Page Delivery to a User

On the same web site, many pages have common
resources. Thus, it is important to know on a page whether the
resources are already in the browser’s cache or not. For
example, different optimizations should be applied on the
page to load it faster.

As for most web sites the resources in the cache typically
expire within several hours, itis usually correct to assume that
if the page was reached from a different page in the same web
site, the common resources will be in the browser’s cache and
if not, most of them will not. Thus, according to an embodi-
ment of the invention, a web page is processed differently for
a case where it was reached from within the web site and for
the case it was reached from without the web site. The con-
clusion about where the page was reached is determined
according, for example but without limitation, the HTTP
headers of the web page, a special cookie, the existence of a
“referrer” header, a configuration or any other technique.

In one embodiment, the WPAA 140 intercepts the web
page and sends the user a different version thereof. The origi-
nal web page may reside in the BEC 144. The acceleration
server 142 based on instructions contained in storage 148
parses the web page in accordance with the invention
described above and provides the web page with the detection
script implementation. The modified web page may also be
stored in the FEC 146 for future use by other user nodes 130.
Other implementations may include, without limitations,
having a component as part of the web page server 120
enabled to perform this acceleration technique, or installing a
software utility on the user node 130, enabled to transform the
web page differently according to its origin.

V. Caching of Dynamic Data

There are several levels of server-side caching that a web
server (e.g., a server 120) can use to increase its performance.
If the web page is generated every time it is requested, one of

US 8,856,263 B2

7

this cache levels can be, and many times is, to keep a gener-
ated version of the page and serve it every time, re-creating it
only when the content of the page is changed. If the HTML
content of the page contains a part which differs between
several instances of the page, and the number of such different
instances is great, it is impossible to keep a cache of the
described type as on the HTML level, every different bit
means a different page. Some web sites solve it by putting all
the dynamic data, which changes between the instances, into
a separate HTML page and load it as a “subpage”. However,
many sites have this type of data embedded into their HTML
document, thus cannot maintaina cache of the described type.

According to an embodiment of the invention, caching of
dynamic data includes separating the static parts of the
HTML page from the dynamic parts. This can be performed
by configurations, for example, “marking” parts of the
HTML as static or dynamic, or automatically, by studying
instances of the same page and deducing which parts are
common. Once the static and dynamic parts of the page have
been marked, this information can be used in two ways: a) the
static part can be processed, for example, to achieve optimi-
zations using, for example, techniques discussed in this docu-
ment or otherwise, and the processed data kept in cache. Once
a request for the page is accepted, the original page is
requested and then the dynamic parts of it are “applied” on the
processed static parts. The resulting page is then sent to a user
node 130; and b) the static part, processed or not, is sent to a
user node 130 from the cache, without a request to the web
server to obtain the original page. However, a code is injected
into the page which directs the browser, without any need of
additional support, to asynchronously send additional one or
more requests to retrieve the dynamic data (see, for example,
techniques to read resources into the cache). When the addi-
tion data is retrieved, it is injected into the DOM to the
relevant places. In a preferred embodiment, this technique
can be utilized web pages in which the dynamic part is rela-
tively small, for example, the dynamic part includes fields
where the username of a user is entered. In such web page, the
entire page is first read from the server-side cache (e.g., BEC
144) and only the username’s value is read from the web
server (e.g., one of web servers 120) and is displayed later in
the page. As the dynamic data is brought in an asynchronous
way, this technique does not delay the loading of the common
data.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for separating
static and dynamic parts of the HTML page in accordance
with the principle described above. In another embodiment,
the WPAA 140 intercepts the web page and parses it prior to
sending the page out to a user node 130. The original web
page may reside in the BEC 144. The acceleration server 142
based on instructions contained in storage 148 parses the web
page in accordance with the invention described above and
separating static and dynamic parts of the HTML page for the
modified web page. The modified web page may also be
stored in the FEC 146 for future use by other user nodes 130.
VI. Intelligent Caching of Resources

The cache in browsers operates in two ways. In a first
aspect of operation, once a resource is loaded to the browser,
the resource may include a header which instructs the browser
how long it should be in its cache (either a period of time of
the time of the expiry of the cache). While this resource is in
the browser’s cache, every time the browser needs it, the
browser reads the resource from the cache and does not send
arequest for this resource. Onethe cache expires, the resource
is deleted from the cache and the next time the browser needs
the resource, the browser sends a request to get the resource.

20

23

30

40

60

65

8

Any file type, such as but not limited to, HTML, Javascript,
images, and CSS, may be affected therefrom. In a second
aspect of operation, once a resource’s time in the browser’s
cache is expired, and the browser needs the resource, the
browser sends a request to the web server along with some
information about the resource that it has in its cache, for
example, its last modification time. Then the server may
return, instead of the content of the request a message con-
firming that the existing resource that is up to date and may be
used.

A severe limitation is that once a resource is in a browser’s
cache, it cannot be invalidated, except for explicitly doing so
by the user by clicking “clear cache” in the browser. As for
this resource, requests to the web server (e.g., one of web
servers 120) are not sent, and furthermore, the server cannot
even send a message indicating that the resource is not up to
date. Thus, a web server cannot set too long of an expiration
time as the resource may change and the browser will not be
cognizant of it. On the other hand, any request, even when
resulting with the server sending a message indicating that the
resource is up to date, is time consuming and ofien delays the
loading time of the web page, thus setting too short an expi-
ration period hurts performance.

In accordance with the invention, every resource is
equipped with a version indication and this version is
increased every time when the resource is changed. Every
whole web page, i.e., a web page along with all its resources,
also has a version. This version is a tuple, or otherwise a
combination of the versions of all its resources, including the
HTML page itself. In one example, a hash function may be
used to change the resource’s version every time any resource
is changed. The version ofthe page, or an identifier that stands
for this version, is sent to the user along with the web page
every time it is requested. If the user has already accessed that
page once or more, the version of the page the user has, or an
identifier which stand for this version, is sent with the request.
In one embodiment, this is achieved by means of cookies. All
the resources are sent with a very long expiration time. Thus,
when the browser encounters these resources it will take them
from the browser cache.

Once the web server (e.g., one of web servers 120) receives
a request for web page, the WPAA 140 intercepts the request
and checks the difference between the user’s version and the
current version of a resource in the requested web page. All
the resources that have not changed are referenced “as is” and
the references to resources which have changed are rewritten
to point to the new references. This is done by changing the
filename of the pointed resource or its query string. For
example, but not by way of limitation, changing the reference
of “image.1 jpg” 1o point to “image.2.jpg” which is the newer
version or changing the reference of “image.jpg?ver=1" to
point to “image.jpg?ver=2". This way requests are made to
the new versions of the changed resources.

The disclosed technique can also be applied to parts of
resources. For example, if the difference between the new
version of the HTML and the version the user has is only one
line and the HTML is big, the browser can request only this
one line and run a client-side code which applies this line into
the cached data. In order to use this technique on HTML
pages, a stub can be used in the following sequence: a) the
browser requests a file. This file is very small and the web
server directs the browser never to cache it. Along with the
request the version of the web page is sent; and, b) the server
then directs the browser (can be used in a number of ways: a
response “redirect” header or a code embedded in the
response which forces the browser to request a new page or to

US 8,856,263 B2

9

bring the difference and apply it). The redirected page
depends on the version and may be cached.
VII. Processing Links in the Background

When prior to serving a page a web server (e.g., one of web
servers 120), or a proxy, has to do some processing, for
example, generate or optimize the page. Such processing
delays the loading of the page. In some cases, processing of a
page can be performed in the background, but there are web
sites with a huge amount of pages, for example, results of
different queries, and they cannot be all processed in the
background in a reasonable time.

When a page is served by a web server or proxy, the pages
which are candidates for being the next pages to be server for
the same user nodes are also processed. The candidate web
pages can be deduced either statically from analyzing the
current page, for example, by looking at all the links, or by
collecting statistics and choosing accordingly, by a configu-
ration or a combination, for example, checking if there are
many links and the order of their processing is defined by the
statistics. This can be done recursively to any depth and
repeating the process on all the chosen pages.

VIII Sending the Common Part of a Plurality of Web Pages
Once

Typically, pages of a particular web site contain common
data. This is done mostly to keep a consistent look and feel to
the web site. This is notable for pages derived from the same
template, but also in the case of pages from different tem-
plates. Every time a browser requests a page, the response
contains the entire page, including the common parts. This is
repeated over and over again and of course burdens the band-
width requirements and slows it unnecessarily as no new data
is in fact transferred to the viewer. According to an embodi-
ment of the invention, the common data between pages is sent
only once.

Therefore, in accordance with the principles of the inven-
tion only the non-common data of a page is sent to the user
every time that the user requests the page, while the common
data is sent only once. This requires a server side component,
or a proxy in the pathway between the user node (e.g., a user
node 130) and a web server (e.g., one of the web servers 120).
In an embodiment of the invention, this acceleration tech-
nique is performed by the WPAA 140.

Specifically, the WPAA 140 computes the differences (also
referred to herein as “diff”) between the requested pages and
sends only such differences to a browser of a user 130. In
addition, only for the first time that the page was requested the
common portions are sent as well. A client side component
(e.g., a user node 13) receives the common parts once, and
then creates the entire data item using the common parts and
differences for a specific page. It should be noted that either
item itself or its representation, for example, in DOM format,
may be sent.

The diff can be created in various levels and using a variety
of algorithms. The diff can be created from the text of the web
pages, or from any logical representations thereof, for
example and without limitation, the DOM of the page can be
used to create a diff, when the pages are compared on the
DOM elements level. One example of creating a diff is using
a “rsync”-like algorithm. The diff of a page the user navigates
to, or for that matter any other page, can be calculated using
the current page the user is at or any other pages the algorithm
recognizes or can assume that the user has. This way a page
for which the diff is the smallest can be chosen. The diff can
be applied by loading the non-common part using a synchro-
nous connection and then applying the diff, or using asyn-
chronous communication such as AJAX and then when the
diff is ready, adding the diff to the web page.

10

FIGS. 4A and 4B are non-limiting and exemplary flow-
charts illustrating the operation of the “sending the common
part of a plurality of web pages once” acceleration technique
in accordance with an embodiment of the invention. This
technique is performed by a client side which may be one of

. the use nodes 130 and a server side which may be the WPAA

30

35

40

45

50

60

140.

The processing of a web page according to this technique is
initiated once a user clicks on a link. The link may be in a form
ofaURL directing to another page. According to this embodi-
ment, the user action (i.e., clicking on the linking) invokes an
AJAX query to the server side. The query contains the current
URL, the URL that the user wants to navigate to, and infor-
mation about which additional URLs from the same website
the user’s browser cache contains.

The AJAX query initiates the process performed by the
server side and further depicted in FIG. 4A. In S411, the
server side receives the AJAX query. At S412, it is determined
which of the URLs that the user already accessed, has the
smallest diff from the requested URL. The (old) page that
corresponds to the URL is marked as “page-1> and the page
that corresponds to the URL that the user navigates to is
marked as “page-2”. Thereafter, a pointer is created and fur-
ther pointed to the beginning of page-2 (S413 and S414). The
pointer is used for sequentially scanning of page-2 when the
diff is computed. Once the pointer reaches the end of page-2,
the process terminates (S415 and S418).

At 8416, the diff between page-1 and page-2 is computed
to create a list of non-matching data blocks and their positions
in-page 1. In exemplary embodiment of the invention, S416
can be performed using any rsync-like algorithms. One with
ordinary skill in the art would be familiar with the operation
of such algorithms. At S417, the server side sends to the client
side the created list and the URL of page-1.

The client side, upon receiving the list of non-matching
data blocks, applies the diff to page-1 to create the modified
page which should is identical to page-2. That is, the nee page
to be viewed is a combination of the content of page-1 and the
diff as contained in the received list. The client side can use a
rsync mechanism to combine the received diff and page-1. It
should be noted that page-1 is stored in the client side’s cache.

FIG. 4B shows a non-limiting and exemplary flowchart
illustrating the process performed by the client side (e.g., a
user node 130) in accordance with an embodiment of the
invention. The process creates a modified page-2 that con-
tains the content of page-1 and non-matching blocks. In S421,
a list of non-matching block as computed by the server side
(e.g., WPAA 140) is received. In S422, an empty container for
the modified page-2 is created. The process scans the received
list from its beginning unit its end when filling the container
(S423, S424 and S428). In S425 it is checked if a current
selected entry is the received list describes a data block in
page-1, if so, in S426, the respective data block from page-1
is append to the container; otherwise, in S427, the respective
data block from the received list is appended to the container.
AtS429, once all entries in the created list have been checked,
the container including the contents of the modified page-2 is
output.

This acceleration technique can be used in combination
with the use of the browser’s cache, with resource combining,
or in-lining. When resources are being in-lined inside an
HTML page, or for that matter any other container, the cache
of the browser is less efficient than when the resources are
taken from external files. However, using the described tech-
nique, when the same resource is in-lined in two or more
different pages, it is not loaded from the server twice, as the

US 8,856,263 B2

11

“rsync” algorithm, or another appropriate algorithm, com-
presses it to several bytes only.

Following is a non-limiting example describing this accel-
eration technique as applied on resources contained in a web
page. In this example, an old resource (resource-1) contains
the data “zabcd1234” and a new resource contains (resource-
2) the data “yxabc34”. The process for creating a list of
non-matching data blocks (e.g., as shown in FIG. 4A) outputs
the list in a form of a data structure illustrated in FIG. 5A
through FIG. 5C.

The process, as described with reference to FIG. 4B, uses
that created list and resource-1 (containing “zabcd1234™) to
generate a modified resource-2 as follows: after processing
block 0, the modified resource-2 container contains “yx”,
after processing block 1, the modified resource-2 container
includes “yxabc”, where the new data added being “abc™ as it
is the data which is located between positions 1 and 3 of
resource-1. Then, upon processing of block 2, the modified
resource-2 container includes “yxabc123”, where the new
data being added is “123” located between positions 5 and 7
ofthe resource-1. As can be noticed the container include the
content of the resource-2.

It should be noted that this process accelerates the access to
the new page/resource (page-2/resource-2) as instead ofload-
ing the new page only differences should be retrieved from
the server-side as the content of the old page/resource (page-
1/resource-1) is cached at the client side.

IX. A Technique for Measuring the Load Time of a Web Page
The load sequence of a typical web page consists of many
different resources. Some of the resources are visible while
others are not. Some of the visible resources are part of the
viewport and others are not. Additionally, the speed a web
page loads, is that which is perceived by a user once the
viewportis complete. It is close to impossible to deduce when
the page has finished loading from the user’s point of view
based merely upon network analysis. Current measurement
techniques either calculate such time once all the components
of the page have finished loading, including those that are
invisible, or check the “onload” event of the HTML docu-
ment, which also has only a small correlation to the actual
user perceived load time.
In most websites, the last item to be loaded in the viewport
is a graphic item, such as an image of a Flash object. This
happens because the size of graphic items is big and takes
time to load. Furthermore, graphic items are often loaded
later than the textual, i.e., HTML, JavaScript, CSS, etc., ele-
ments. Using this assumption, the following acceleration
techniques measures the actual perceived load time of a web
page:
For every background image, the server creates invisible
dummy images that are marked as loaded when the
background image finishes loading.
The time the page starts loading is saved in memory.
Once every predefined time interval, that can be set to
different values, depending on the desires granularity of
the result, the following is performed:
All the graphical elements in the web page are checked,
for example, by scouting the DOM of the web page,
by lists exported by the browser, such as document
images, or by any other means. The elements can be
images, Flash objects, or any other type of element.
For every element found, its position is calculated, for
example, by using all the elements starting from the
desired elements and finishing at the root of the
DOM tree, or by any other way.

If the element’s position is in the viewport, it is added
to the known viewport element list.

10

40

45

50

55

60

12

Saveto storage, persistent or not, a graphical snapshot of
the screen that may contain only the browser, or any
other part of the screen, along with the elapsed time
passed since the start load time. These snapshots can
be later analyzed to determine the exact time the view-
port has finished rendering.

Repeat the process for all the known element lists pre-
viously created.

If any of the elements has not finished loading yet,
which can be determined by a readyState property
or any other way, then wait for the next iteration.

1f all the elements are loaded, check if enough time
has passed since the last element in the list was
loaded and since the list was last changed. If
enough time passed, where “enough time” can be
defined to be any suitable value, the time the last
resource in the list was loaded is marked as the time
the page ended loading.

Return, display, or otherwise store in memory the load time
which is the end of loading time minus the start of
loading time, in addition to marking the snapshot corre-
sponding to the time the document perceived to be fully
loaded.

X. Using Versioning to Cache Combined Files

One technique to reduce latency when reading multiple
resources is to combine resources files, and thereby reducing
the overall latency. When creating combined resource files,
one loses the advantage of the browser cache. Thus, the same
resource which is part of two or more files now combined will
not be cached between these different files.

Every resource from a combined file is assigned a unique
identifier which includes its version. This can be any unique
number and it can be any hash function of the content or the
name or URL of the file. For example, the popular hash
function MD5 can be used to assign a unique identifier to a
hash function. Either the use node 130 or the web server 120
holds in their internal storage the identifiers of the resources
already read and have in the respective cache. In case of a user
node 130, the identifiers may be stored in a browser cache, a
Flash storage, a local storage, or any other storage type. In
case the server holds this data, it holds it for every client,
either in memory, or in storage such as a disk or any other
location. In this case, every user is uniquely identified (for
example using an identification cookie), thus this data can be
saved for any user separately.

In the case where the user node 130 (or client) stores the
resources data, the web server 120 adds a script at the begin-
ning of every web page that performs the following actions:

For every relevant resource on the page:

Check if this resource, including version, is present in
the storage.

Ifit exists, replace the URL of the resource pointed to
by the cached inline file, and as may be applicable
to a position in it.

If it does not exist, add its path to the list of missing
resources and replace the URL of the resource
pointed to by a new combined file which contains
all the missing resources, and as may be applicable
to a position in it.

Send the list of all the missing resources as part of a request
to the server. This request asks for an inlined file with all
the missing resources. The names or identifiers of the
missing resources may be passed in the query string orin
any other way.

This way all the resources which were already seen by the

browser in previous combined files are taken from there and
all the resources which were not previously seen by the

US 8,856,263 B2

13

browser will arrive in a new single combined file. Another
way to implement this is to save all the information about
every user in the sever side. This way the page which is served
by the server already contains the correct URL’s (whether
those which are already in the cache or new ones) and it needs
not to be replaced by a client-side script.

In the case where the web server 120 stores the resources
data, the server 120 performs the following action of the web
page before sending it to the user:

Identify the user (for example using a cookie).

If the user was not found, assume that the user does not

have any resource in the browser’s cache.

If the uvser is identified, get from the storage (either
memory, or disk or any other storage) the resources that
the user has in the browser’s cache and the names of the
container that have these resources in them.

Create one or more empty containers, which will be used
for the resources the user does not already have.

Scan the web page for resources and for each resource
performs the following:

If the user already has it in the browser’s cache, replace
the reference to the resource by the reference of the
resource in the container the user already has.

If the user does not have the resource in the browser’s
cache, add the resource to one of the prepared con-
tainers and change the reference to the resource to
point to the resource in the container.

At the end of the process all the resources the user already
has will be referenced to containers the user has in its
cache and the new resources will be referenced to the
resources in the new containers. Thus only the new
resources will be downloaded by the client, combined in
the prepared one or more containers.

In one embodiment of the invention, the tasks performed
by the web server 120 when combining resources can be
performed by the WPAA 140. According to this embodiment,
the WPAA 140 intercepts the page before sending to the user
node 130, determines where the resources data resides, and
modifies the web page based on the location of the resources
data.

The principles of the invention and embodiments thereto
are implemented as hardware, firmware, software or any
combination thereof. Moreover, the software is preferably
implemented as an application program tangibly embodied in
a program storage unit, a non-transitory computer readable
medium or a non-transitory machine-readable storage
medium that can be in a form of a digital circuit, an analogy
circuit, a magnetic medium, or combination thereof. The
application program may be uploaded to, and executed by, a
machine comprising any suitable architecture. Preferably, the
machine is implemented on a computer platform having hard-
ware such as one or more central processing units (“CPUs™),
a memory, and input/output interfaces. The computer plat-
form may also include an operating system and microinstruc-
tion code. The various processes and functions described
herein may be either part of the microinstruction code or part
of the application program, or any combination thereof,
which may be executed by a CPU, whether or not such com-
puter or processor is explicitly shown. In addition, various
other peripheral units may be connected to the computer
platform such as an additional data storage unit and a printing
unit.

The foregoing detailed descriptionhas set forth a few of the
many forms that the invention can take. It is intended that the
foregoing detailed description be understood as an illustra-
tion of selected forms that the invention can take and not as a

10

15

25

30

35

40

43

50

55

60

65

14

limitation to the definition of the invention. It is only the
claims, including all equivalents that are intended to define
the scope of this invention.

What is claimed is:

1. A system for accelerating access to resources of web
pages, the system comprising:

a cache for storing resources of web pages;

an acceleration server that:

receives a first web page in response to a request by a
user system;

parses the first web page;

identifies, based at Jeast partially on parsing the first web
page, a second web page, wherein the second web
page is likely to be requested by the user system after
the user system accesses the first web page;

identifies a first resource, wherein the first resource is a
resource of the second web page;

requests the first resource from a server hosting the first
resource before the user system requests the first
resource;

receives the first resource from the server hosting the
first resource;

stores the first resource in the cache; and

provides the first resource to the user system from the
cache in response to a request by the user system for
the first resource; and

a network interface that:

enables communication of one or more user nodes with
one or more web servers over a network for accessing
web pages stored in one or more servers;

receives the request for the first web page, wherein the
request for the first web page originates from the user
system; and

receives a request for the first resource, wherein the
request for the first resource originates from the user
system after the acceleration server requests the first
resource from the server hosting the first resource.

2. The system for accelerating access to resources of web
pages as recited in claim 1, wherein the network interface
receives a request for the second web page and the accelera-
tion server provides the second web page to the user system.

3. The system for accelerating access to resources of web
pages as recited in claim 1, wherein:

the acceleration server further identifies a third web page,

such that the first resource is common to both the second
web page and the third web page; and

the acceleration server stores the first resource in the cache

based on the first resource being common to more than
one web page.

4. The system for accelerating access to resources of web
pages as recited in claim 1, wherein the network interface
receives the request for the first web page by intercepting the
request for the first web page.

5. The system for accelerating access to resources of web
pages as recited in claim 1, further comprising a second
cache, separate from the cache, and stores the first web page
in the second cache before the first web page is requested by
the user system.

6. The system for accelerating access to resources of web
pages as recited in claim 1, wherein the first resource is a static
component of the second web page.

7. A method for accelerating access to resources of web
pages, the method comprising:

receiving the request for a first web page, wherein the

request for the first web page originates from the user
system,;

US 8,856,263 B2

15

receiving the first web page in response to a request by the

user system;

providing the first web page to the user system;

parsing the first web page;

identifying, based at least partially on parsing the first web

page, a second web page, wherein the second web page
is likely to be requested by the user system after the user
system accesses the first web page;

identifying a first resource, wherein the first resource is a

resource of the second web page;

requesting the first resource from a server hosting the first

resource before the user system requests the first
resource;

receiving the first resource from the server hosting the first

resource;
storing the first resource in a cache; and
receiving a request for the first resource, wherein the
request for the first resource originates from the user
system after the acceleration server requests the first
resource from the server hosting the first resource; and

providing the first resource to the user system from the
cache in response to the request by the user system for
the first resource.

8. The method for accelerating access to resources of web
pages as recited in 7, further comprising determining the
second web page is likely to be accessed after the first web
page based on parsing the first web page.

9. The method for accelerating access to resources of web
pages as recited in 7, further comprising identifying a third
web page, such that the first resource is common to both the
second web page and the third web page.

10. The method for accelerating access to resources of web
pages as recited in 7, further comprising:

identifying a second resource that is common to the second

web page and to a third web page; and

storing the second resource in the cache based on the sec-

ond resource being common to more than one web page.

11. The method for accelerating access to resources of web
pages as recited in 7, wherein the first resource is common to
multiple web pages that are configured to be accessed from
the first web page.

12. The method for accelerating access to resources of web
pages as recited in 7, wherein the first resource is common to
all other web pages that are configured to be accessed from
the first web page.

13. The method for accelerating access to resources of web
pages as recited in 7, wherein the first resource is a static
component of the second web page.

14. The method for accelerating access to resources of web
pages as recited in 7, further comprising analyzing the first
web page for applying an acceleration technique to the first
web page.

10

15

25

30

35

40

45

50

16

15. A memory device having instructions that when
executed cause one or more processors to perform the follow-
ing steps for accelerating access to resources of web pages:

receive the request for a first web page, wherein the request

for the first web page originates from the user system;
receive the first web page in response to a request by the
user system;

provide the first web page to the user system;

parse the first web page; :

identify, based at least partially on parsing the first web

page, a second web page, wherein the second web page
is likely to be requested by the user system after the user
system accesses the first web page;

identify a first resource, wherein the first resource is a

resource of the second web page;

request the first resource from a server hosting the first

resource before the user system requests the first
resource;

receive the first resource from the server hosting the first

resource;

store the first resource in a cache; and

receive a request for the first resource, wherein the request

for the first resource originated from the user system
after the acceleration server requested the first resource
from the server hosting the first resource; and

provide the first resource to the user system from the cache

in response to the request by the user system for the first
resource.

16. The memory device having instructions as recited in
claim 15, that when executed further cause the one or more
processors to identify a third web page, such that the first
resource is common to both the second web page and the third
web page.

17. The memory device having instructions as recited in
claim 15, wherein the instructions further cause the one or
more processors to determine the second web page is likely to
be accessed after the first web page based on parsing the first
web page.

18. The memory device having instructions as recited in
claim 15, wherein the first resource is common to multiple
web pages that are configured to be accessed from the first
web page.

19. The memory device having instructions as recited in
claim 15, wherein the second web page is an HTML web page
that uses a plurality of resources, and the first resource is one
of the plurality of resources.

20. The memory device having instructions as recited in
claim 15, wherein providing the first resource is performed
without providing the second web page to the user system.

E R T T

Exhibit D

US008683002B2

a2y United States Patent 0) Patent No.: US 8,683,002 B2
Harvell et al. 45) Date of Patent: *Mar. 25, 2014
(54) CONTENT DELIVERY NETWORK CACHE (56) References Cited
GROUPING

U.S. PATENT DOCUMENTS

(71) Applicant: (I{}g‘)ehght Networks, Inc., Tempe, AZ 6,542,064 B1* 4/2003 Scharberrooerer 7117122

6,785,704 B1* 872004 McCanne 718/105

8,028,090 B2* 92011 Richardson et al. .. 709/238
(72) Inventors: Bradley B. Harvell, Chandler, AZ (US); 8,219,645 B2* 7/2012 Harvelletal. 709,219
Nils H. McCarthy, Seattle, WA (US) 8,219,647 B2* 7/2012 Harvell etal.c..c........ 709/219
8,370,449 B2* 2/2013 Harvell etal. 709/214
ionee: Limeli 2002/0009079 A1* 12002 Jungcketal. 370/389
(73) Assignee: L";ehght Networks, Inc., Tempe, AZ 2007/0025327 Al* 22007 Raciborski et al 370/351
Us) 2008/0071859 A1* 3/2008 Seedetal. 709203
.) o . 2009/0248858 A1* 10/2009 Sivasubramanian et al. . 709/224
(*) Notice: Subject to any disclaimer, the term of this 2009/0254661 Al* 10/2009 Fullagaretal. 709/226
patent is extended or adjusted under 35 * cited b .
U.S.C. 154(b) by O days. cited by examiner
This patent is subject to a terminal dis-
claimer. Primary Examiner — Jungwon Chang
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
(21) Appl. No.: 13/732,570 Stockton LLP

(22) Filed: Jan. 2, 2013
(57) ABSTRACT

65 Prior Publication Data
65) One or more content delivery networks (CDNs) that deliver

US 2013/0246555 A1 Sep. 19, 2013 content objects for others is disclosed. Content is propagated
. to edge servers through hosting and/or caching. End user
Related U.S. Application Data computers are directed to an edge server for delivery of a

(63) Continuation of application No. 13/525,671, filed on requested content object by a universal resource indicator
Jun. 18, 2012, now Pat. No. 8,370,449, which is a (URD). When a particular edge server does not have a copy of
continuation of application No. 13/245,797, filed on the content object from the URI, information is passed to

Sep. 26, 2011, now Pat. No. 8,219,647, which is a another server, the ancestor or parent server to find the content
continuation of application No. 12/732,942, filed on object. There can be different parents servers designated for

Mar. 26, 2010, now Pat. No. 8,219,645, different URIs. The parent server looks for the content object

. L . and if not found, will go to another server, the grandparent

(60) Provisional application No. 61/248,378, filed on Oct. server, and so on up a hierarchy within the group. Eventually,
2,2009. the topmost server in the hierarchy goes to the origin server to

find the content object. The origin server may be hosted in the

(1) Int.Cl. CDN or at a content provider across the Internet. Once the

GOGF 15/167 (2006.01) content object is located in the hierarchical chain, the content
(52) US.ClL object is passed back down the chain to the edge server for
USPC .oooeeiverceerveesnenns 709/214, 709/21 9, 711/122 delivery. Optlonally the various servers in the chain may
(58) Field of Classification Search cache or host the content object as it is relayed.
USPC ..cooieee 709/214, 219, 203, 226, 224, 238;
. 370/351,389; 718/105; 711/122
See application file for complete search history. 20 Claims, 7 Drawing Sheets

Reosive LRI Specilying Canenf]
Otya1 & Group Viriable
408

Reguest Conlent Crject
vom Ancesior Cachais)

¢

N

R

116..\ |

by

Origin
Server

T
Content

| = = -Tos_i —]
. Content I,f
Provider

102-1

) Site

me—

e — v anon)

10 I
\

1201

1 Point of
Presence

2
‘\ . Point of
Presence

Internet

End User
System(s)

~
End User

System(s)

N 114

“r:’ WAN/LAN

. Pointof

A

Presence

FIG. 1

End User
System(s)

100

kg ‘SN

PI0T ‘ST e

LJO T J90YS

7d 700°€89°8 SN

U.S. Patent Mar. 25,2014 Sheet2 of 7 US 8,683,002 B2

110

o 4

CDN Crigin
Server

1

104~ X NN

N 114

nternet) { WAN/LAN

Switch [°

Fabric

B Edge Server

Edge Server

¥
m
o
o]
®
ey
@
<
@
-

U.S. Patent Mar. 25, 2014 Sheet 3 of 7 US 8,683,002 B2

114 |

[wanLan)

[

-

Cache
Engine

Parent
Group Map

|
|
|
|
|

U.S. Patent Mar. 25, 2014

Receive URI Specifying Content|
Object & Group Variable

i

Check Cache for

Content Object

412

" Content Object ™
Available?

Obtain Group
Variable

k

Sheet 4 of 7 US 8,683,002 B2

{\/ 400-1

from Group Variable

Determine Ancestor Cache

\:

Reguest Content Object
from Ancestor Cache

Fig. 4A

404
~408
432
e
YES »| Relay Content Object
Down Through Heirarchy
438
£
~420 Deliver Content Obiect from Cache
that Received URI Criginally
424
J,.428

U.S. Patent Mar. 25, 2014 Sheet 5 of 7 US 8,683,002 B2

404

Receive URI Specifying Content |
Object & Group Variable

i r 406

Re-write URI into
Source URI

408

A 4

Check Cache for
Content Object

~412

” Content Object | YES

{\/4(}@-2

432
. 3

-
Relay Content Object

Available?

416

Retrieve Ancestor Cache
information for Source URI

422
: [

Ancestor Cache(s) are
Found for the Source URI

i J,,428

Request Content Object
from Ancestor Cache(s)

Fig. 4B

b 4

Down Through Heirarchy

436
% L

g

Deliver Content Object from Cache
that Received URI Originally

U.S. Patent Mar. 25,2014 Sheet 6 of 7 US 8,683,002 B2

404

Receive URI Specifying Content
Object & Group Variable

i e 406

Re-write URI into

Source URI &/\/ 400-3
l 408

Check Cache for
Content Object

~ 412

432
" Content Opject YES » Relay Content Object
Available? Down Through Heirarchy
438
o

414 Deliver Content Object from Cache

that Received URI Originally

Check Neighboring Caches
for Content Object

i 416

Retrieve Ancestor Cache
information for Source URI

422
Y

Anceastor Cache(s) are
Found for the Source URI

i f428

Request Content Object
from Ancestor Cache(s)

Fig. 4C

U.S. Patent

Mar. 25, 2014

Sheet 7 of 7

US 8,683,002 B2

l c 508-1

Los Angeles
POP

Edgs
Cacheg A

y
Denver
POP

504-3

L

504-4

|
|
|
|
508-2 |
|
|
|
E

Edge
Cache C

Cache D

v

Edge Edge §
Cache E

US 8,683,002 B2

1
CONTENT DELIVERY NETWORK CACHE
GROUPING

CROSS-REFERENCES TO RELATED
APPLICATIONS

This is a continuation patent application of U.S. patent
application Ser. No. 13/525,671 filed on Jun. 18, 2012, which
is a continuation of U.S. patent application Ser. No. 13/245,
797 filed on Sep. 26, 2011, which is a continuation applica-
tion of U.S. patent application Ser. No. 12/732,942 filed on
Mar. 26, 2010, which claims the benefit of U.S. Application
No. 61/248,378 filed Oct. 2, 2009. The entire disclosures of
the above-listed applications are incorporated by reference in
their entirety for all purposes.

BACKGROUND

This disclosure relates in general to content delivery net-
works and, but not by way of limitation, to serving content
objects from edge server caches of a content delivery net-
work.

Content delivery networks (CDNSs) are in the business of
delivering content for others. CDNs will either cache and/or
host content for its customers. Efficiently delivering content
for a large number of customers creates difficulty. It would
not be practical to store every possible content object serviced
by the CDN on every edge server. Often caches are used on
the edge servers to store popular or important content at the
edges of the CDN. Popular content is less likely to have
delivery latency, while less popular content is more likely to
take a longer time to locate and deliver.

In some cases, the content object is not available on the
edge server. This situation is sometimes referred o as a cache
miss. A universal resource locator (URL) provided to the
CDN from a requestor is used to find the content with a cache
miss. The content may be hosted internal to the CDN or with
a content provider. Finding the content object can be time
intensive and affect the quality of service (QoS) perceived by
the requestor. This is especially true for content that cannot be
located in the CDN and requires arequest to an external origin
server to find the content.

CDNs5s are typically comprised of a number of different
locations that serve content from, so called points of presence
(POPs). In some cases, these different POPs are intercon-
nected using the Internet and/or private backbones. Content
not found in one POP may be readily available from another
POP. Even within a POP, there are typically a number of
different edge servers that each fulfill requests for content.
These different edge servers have different capabilities and
different content in their cache. A cache miss at a particular
edge server would be expensive in QoS terms to fulfill from
another server or even outside the CDN.

SUMMARY

In one embodiment, one or more content delivery networks
(CDNis) deliver content objects for others. Content is propa-
gated to edge servers through hosting and/or caching. End
user computers are directed to an edge server for delivery of
a requested content object by a universal resource indicator
(URI). When a particular edge server does not have a copy of
the content object referenced in the URI, information is
passed to another server, the ancestor or parent server to find
the content object. There can be different parents servers
designated for different URIs. The parent server looks for the
content object and if not found, will go to another server, the

25

30

40

45

55

60

65

2

grandparent server, and so on up a hierarchy within the group.
Eventually, the topmost server in the hierarchy goes to the
origin server to find the content object. The origin server may
be hosted in the CDN or at a content provider across the
Internet. Once the content object is located in the hierarchical
chain, the content object is passed back down the chain to the
edge server for delivery. Optionally, the various servers in the
chain may cache or host the content object as it is relayed.
Further areas of applicability of the present disclosure will
become apparent from the detailed description provided here-
inafter. It should be understood that the detailed description
and specific examples, while indicating various embodi-
ments, are intended for purposes of illustration only and are
not intended to necessarily limit the scope of the disclosure,

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is described in conjunction with the
appended figures:

FIG. 1 depicts a block diagram of an embodiment of a
content distribution system;

FIG. 2 depicts a block diagram of an embodiment of a
content delivery network (CDN);

FIG. 3 depicts a block diagram of an embodiment of a
portion of a content delivery network (CDN) that includes a
server coupled to a CDN network;

FIGS. 4A, 4B and 4C illustrate flowcharts of embodiments
of a process for finding a content object through various
hierarchies; and

FIG. 5 depicts a block diagram of an embodiment of a
lookup tree.

In the appended figures, similar components and/or fea-
tures may have the same reference label. Further, various
components of the same type may be distinguished by fol-
lowing the reference label by a dash and a second label that
distinguishes among the similar components. If only the first
reference label is used in the specification, the description is
applicable to any one of the similar components having the
same first reference label irrespective of the second reference
label.

DETAILED DESCRIPTION

The ensuing description provides preferred exemplary
embodiment(s) only, and is not intended to limit the scope,
applicability or configuration of the disclosure. Rather,
the ensuing description of the preferred exemplary embodi-
ment(s) will provide those skilled in the art with an enabling
description for implementing a preferred exemplary embodi-
ment. It being understood that various changes may be made
in the function and arrangement of elements without depart-
ing from the spirit and scope as set forth in the appended
claims.

Referring first to FIG. 1, a block diagram of an embodiment
of a content distribution system 100 is shown. The content
originator 106 officads delivery of the content objects to a
content delivery network (CDN) 110 in this embodiment. The
content originator 106 produces and/or distributes content
objects and includes a content provider 108, a content site
116, and an origin server 112. The CDN 110 can both cache
and/or host content in various embodiments for third parties
to offload delivery and typically provide better quality of
service (QoS) to a broad spectrum of end user systems 102
distributed worldwide.

In this embodiment, the content distribution system 100
locates the content objects (or portions thereof) and distrib-
utes the content objects to an end user system 102. The

US 8,683,002 B2

3

content objects are dynamically cached within the CDN 110.
A content object is any content file or content stream and
could include, for example, video, pictures, data, audio, soft-
ware, and/or text. The content object could be live, delayed or
stored. Throughout the specification, references may be made
to a content object, content, content stream and/or content
file, but it is to be understood that those terms could be used
interchangeably wherever they may appear.

Many content providers 108 use a CDN 110 to deliver the
content objects over the Internet 104 to end users 128. The
CDN 110 includes a number of points of presence (POPs)
120, which are geographically distributed through the content
distribution system 100 to deliver content. Various embodi-
ments may have any number of POPs 120 within the CDN
110 that are generally distributed in various locations around
the Internet 104 so as to be proximate to end user systems 102.
Multiple POPs use the same IP address such that an Anycast
routing scheme is used to find a POP likely to be close to the
end user in a network sense for each request. In addition to the
Internet 104, a wide area network (WAN) and/or local area
network (LAN) 114 or other backbone may couple the POPs
120 with each other and also couple the POPs 120 with other
parts of the CDN 110.

When an end user 128 requests a web page through its
respective end user system 102, the request for the web page
is passed either directly or indirectly via the Internet 104 to
the content originator 106. The content originator 106 is the
source or re-distributor of content objects. The content site
116 is an Internet web site accessible by the end user system
102. In one embodiment, the content site 116 could be a web
site where the content is viewable with a web browser. In
other embodiments, the content site 116 could be accessible
with application software other than a web browser. The
content provider 108 directs content requests to a CDN 110
after they are made or formulates the delivery path by embed-
ding the delivery path into the universal resource indicators
(URIs) for a web page. In any event, the request for content is
handed over to the CDN 110 in this embodiment by using an
Anycast IP address corresponding to two or more POPs 120.

Once the request for a content object is passed to the CDN
110, the request is associated with a particular POP 120
within the CDN 110 using the Anycast routing scheme. The
particular POP 120 may retrieve the portion of the content
object from the content provider 108. Alternatively, the con-
tent provider 108 may directly provide the content object to
the CDN 110 and its associated POPs 120 through prepopu-
lation, i.e., in advance of the first request. In this embodiment,
the content objects are provided to the CDN 110 and stored in
one or more CDN servers such that the portion of the
requested content may be hosted from the CDN 110. The
CDN servers include edge servers in each POP 120 that
actually serve end user requests. The origin server 112 holds
a copy of each content object for the content originator 106.
Periodically, the content of the origin server 112 may be
reconciled with the CDN 110 through a cache, hosting and/or
pre-population algorithm. Some content providers could use
an origin server within the CDN 110 to host the content and
avoid the need to maintain a copy.

Once the content object is retrieved, the content object is
stored within the particular POP 120 and is served from that
POP to the end user system 102. The end user system 102
receives the content object and processes it for use by the end
user 128. The end user system 102 could be a personal com-
puter, media player, handheld computer, Internet appliance,
phone, IPTV set top, streaming radio or any other device that
receives and plays content objects. In some embodiments, a
number of the end user systems 102 could be networked

10

15

20

25

30

35

40

45

50

55

60

65

4

together. Although this embodiment only shows a single con-
tent originator 106 and a single CDN 110, it is to be under-
stood that there could be many of each in various embodi-
ments.

With reference to FIG. 2, a block diagram of an embodi-
ment of a CDN 110 is shown. Although only one POP 120 is
shown in detail, there are a number of POPs 120 similarly
configured thronghout the CDN 110. The POPs communicate
through a WAN/LAN 114 and/or the Internet 104 when locat-
ing content objects. An interface to the Internet 104 to the
POP 120 accepts requests for content objects from end user
systems 102. The request comes from an Internet protocol
(IP) address in the form of a URI.

Switch fabric 240 assigns the request to one of the edge
servers 230 according to a routing scheme such as round
robin, load balancing, etc. In this embodiment, the switch
fabric is aware of which edge servers 230 have what capabili-
ties and assigns within the group having the capability to store
and serve the particula